skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: LDRD-DR midterm review - High-order hydrodynamic methods for exascale computing

Abstract

We propose to develop the first Lagrange+remap ALE discontinuous Galerkin (DG) hydrodynamic method on high-order elements for simulating gas and solid dynamics.

Authors:
 [1];  [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1411365
Report Number(s):
LA-UR-17-30882
DOE Contract Number:
AC52-06NA25396
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 97 MATHEMATICS AND COMPUTING

Citation Formats

Morgan, Nathaniel Ray, and Burton, Donald E. LDRD-DR midterm review - High-order hydrodynamic methods for exascale computing. United States: N. p., 2017. Web. doi:10.2172/1411365.
Morgan, Nathaniel Ray, & Burton, Donald E. LDRD-DR midterm review - High-order hydrodynamic methods for exascale computing. United States. doi:10.2172/1411365.
Morgan, Nathaniel Ray, and Burton, Donald E. 2017. "LDRD-DR midterm review - High-order hydrodynamic methods for exascale computing". United States. doi:10.2172/1411365. https://www.osti.gov/servlets/purl/1411365.
@article{osti_1411365,
title = {LDRD-DR midterm review - High-order hydrodynamic methods for exascale computing},
author = {Morgan, Nathaniel Ray and Burton, Donald E.},
abstractNote = {We propose to develop the first Lagrange+remap ALE discontinuous Galerkin (DG) hydrodynamic method on high-order elements for simulating gas and solid dynamics.},
doi = {10.2172/1411365},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2017,
month =
}

Technical Report:

Save / Share:
  • Hydrodynamic algorithms are at the core of many laboratory missions ranging from simulating ICF implosions to climate modeling. The hydrodynamic algorithms commonly employed at the laboratory and in industry (1) typically lack requisite accuracy for complex multi- material vortical flows and (2) are not well suited for exascale computing due to poor data locality and poor FLOP/memory ratios. Exascale computing requires advances in both computer science and numerical algorithms. We propose to research the second requirement and create a new high-order hydrodynamic algorithm that has superior accuracy, excellent data locality, and excellent FLOP/memory ratios. This proposal will impact a broadmore » range of research areas including numerical theory, discrete mathematics, vorticity evolution, gas dynamics, interface instability evolution, turbulent flows, fluid dynamics and shock driven flows. If successful, the proposed research has the potential to radically transform simulation capabilities and help position the laboratory for computing at the exascale.« less
  • The U.S. Department of Energy (DOE) Office of Science (SC) Offices of High Energy Physics (HEP) and Advanced Scientific Computing Research (ASCR) convened a programmatic Exascale Requirements Review on June 10–12, 2015, in Bethesda, Maryland. This report summarizes the findings, results, and recommendations derived from that meeting. The high-level findings and observations are as follows. Larger, more capable computing and data facilities are needed to support HEP science goals in all three frontiers: Energy, Intensity, and Cosmic. The expected scale of the demand at the 2025 timescale is at least two orders of magnitude — and in some cases greatermore » — than that available currently. The growth rate of data produced by simulations is overwhelming the current ability of both facilities and researchers to store and analyze it. Additional resources and new techniques for data analysis are urgently needed. Data rates and volumes from experimental facilities are also straining the current HEP infrastructure in its ability to store and analyze large and complex data volumes. Appropriately configured leadership-class facilities can play a transformational role in enabling scientific discovery from these datasets. A close integration of high-performance computing (HPC) simulation and data analysis will greatly aid in interpreting the results of HEP experiments. Such an integration will minimize data movement and facilitate interdependent workflows. Long-range planning between HEP and ASCR will be required to meet HEP’s research needs. To best use ASCR HPC resources, the experimental HEP program needs (1) an established, long-term plan for access to ASCR computational and data resources, (2) the ability to map workflows to HPC resources, (3) the ability for ASCR facilities to accommodate workflows run by collaborations potentially comprising thousands of individual members, (4) to transition codes to the next-generation HPC platforms that will be available at ASCR facilities, (5) to build up and train a workforce capable of developing and using simulations and analysis to support HEP scientific research on next-generation systems.« less
  • The mission of the U.S. Department of Energy Office of Science (DOE SC) is the delivery of scientific discoveries and major scientific tools to transform our understanding of nature and to advance the energy, economic, and national security missions of the United States. To achieve these goals in today’s world requires investments in not only the traditional scientific endeavors of theory and experiment, but also in computational science and the facilities that support large-scale simulation and data analysis. The Advanced Scientific Computing Research (ASCR) program addresses these challenges in the Office of Science. ASCR’s mission is to discover, develop, andmore » deploy computational and networking capabilities to analyze, model, simulate, and predict complex phenomena important to DOE. ASCR supports research in computational science, three high-performance computing (HPC) facilities — the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory and Leadership Computing Facilities at Argonne (ALCF) and Oak Ridge (OLCF) National Laboratories — and the Energy Sciences Network (ESnet) at Berkeley Lab. ASCR is guided by science needs as it develops research programs, computers, and networks at the leading edge of technologies. As we approach the era of exascale computing, technology changes are creating challenges for science programs in SC for those who need to use high performance computing and data systems effectively. Numerous significant modifications to today’s tools and techniques will be needed to realize the full potential of emerging computing systems and other novel computing architectures. To assess these needs and challenges, ASCR held a series of Exascale Requirements Reviews in 2015–2017, one with each of the six SC program offices,1 and a subsequent Crosscut Review that sought to integrate the findings from each. Participants at the reviews were drawn from the communities of leading domain scientists, experts in computer science and applied mathematics, ASCR facility staff, and DOE program managers in ASCR and the respective program offices. The purpose of these reviews was to identify mission-critical scientific problems within the DOE Office of Science (including experimental facilities) and determine the requirements for the exascale ecosystem that would be needed to address those challenges. The exascale ecosystem includes exascale computing systems, high-end data capabilities, efficient software at scale, libraries, tools, and other capabilities. This effort will contribute to the development of a strategic roadmap for ASCR compute and data facility investments and will help the ASCR Facility Division establish partnerships with Office of Science stakeholders. It will also inform the Office of Science research needs and agenda. The results of the six reviews have been published in reports available on the web at http://exascaleage.org/. This report presents a summary of the individual reports and of common and crosscutting findings, and it identifies opportunities for productive collaborations among the DOE SC program offices.« less
  • The goal of this research was to investigate the potential for employing dynamic, decentralized software architectures to achieve reliability in future high-performance computing platforms. These architectures, inspired by peer-to-peer networks such as botnets that already scale to millions of unreliable nodes, hold promise for enabling scientific applications to run usefully on next-generation exascale platforms ({approx} 10{sup 18} operations per second). Traditional parallel programming techniques suffer rapid deterioration of performance scaling with growing platform size, as the work of coping with increasingly frequent failures dominates over useful computation. Our studies suggest that new architectures, in which failures are treated as ubiquitousmore » and their effects are considered as simply another controllable source of error in a scientific computation, can remove such obstacles to exascale computing for certain applications. We have developed a simulation framework, as well as a preliminary implementation in a large-scale emulation environment, for exploration of these 'fault-oblivious computing' approaches. High-performance computing (HPC) faces a fundamental problem of increasing total component failure rates due to increasing system sizes, which threaten to degrade system reliability to an unusable level by the time the exascale range is reached ({approx} 10{sup 18} operations per second, requiring of order millions of processors). As computer scientists seek a way to scale system software for next-generation exascale machines, it is worth considering peer-to-peer (P2P) architectures that are already capable of supporting 10{sup 6}-10{sup 7} unreliable nodes. Exascale platforms will require a different way of looking at systems and software because the machine will likely not be available in its entirety for a meaningful execution time. Realistic estimates of failure rates range from a few times per day to more than once per hour for these platforms. P2P architectures give us a starting point for crafting applications and system software for exascale. In the context of the Internet, P2P applications (e.g., file sharing, botnets) have already solved this problem for 10{sup 6}-10{sup 7} nodes. Usually based on a fractal distributed hash table structure, these systems have proven robust in practice to constant and unpredictable outages, failures, and even subversion. For example, a recent estimate of botnet turnover (i.e., the number of machines leaving and joining) is about 11% per week. Nonetheless, P2P networks remain effective despite these failures: The Conficker botnet has grown to {approx} 5 x 10{sup 6} peers. Unlike today's system software and applications, those for next-generation exascale machines cannot assume a static structure and, to be scalable over millions of nodes, must be decentralized. P2P architectures achieve both, and provide a promising model for 'fault-oblivious computing'. This project aimed to study the dynamics of P2P networks in the context of a design for exascale systems and applications. Having no single point of failure, the most successful P2P architectures are adaptive and self-organizing. While there has been some previous work applying P2P to message passing, little attention has been previously paid to the tightly coupled exascale domain. Typically, the per-node footprint of P2P systems is small, making them ideal for HPC use. The implementation on each peer node cooperates en masse to 'heal' disruptions rather than relying on a controlling 'master' node. Understanding this cooperative behavior from a complex systems viewpoint is essential to predicting useful environments for the inextricably unreliable exascale platforms of the future. We sought to obtain theoretical insight into the stability and large-scale behavior of candidate architectures, and to work toward leveraging Sandia's Emulytics platform to test promising candidates in a realistic (ultimately {ge} 10{sup 7} nodes) setting. Our primary example applications are drawn from linear algebra: a Jacobi relaxation solver for the heat equation, and the closely related technique of value iteration in optimization. We aimed to apply P2P concepts in designing implementations capable of surviving an unreliable machine of 10{sup 6} nodes.« less
  • The widespread use of computing in the American economy would not be possible without a thoughtful, exploratory research and development (R&D) community pushing the performance edge of operating systems, computer languages, and software libraries. These are the tools and building blocks — the hammers, chisels, bricks, and mortar — of the smartphone, the cloud, and the computing services on which we rely. Engineers and scientists need ever-more specialized computing tools to discover new material properties for manufacturing, make energy generation safer and more efficient, and provide insight into the fundamentals of the universe, for example. The research division of themore » U.S. Department of Energy’s (DOE’s) Office of Advanced Scientific Computing and Research (ASCR Research) ensures that these tools and building blocks are being developed and honed to meet the extreme needs of modern science. See also http://exascaleage.org/ascr/ for additional information.« less