## Extending the density functional embedding theory to finite temperature and an efficient iterative method for solving for embedding potentials

A key element in the density functional embedding theory (DFET) is the embedding potential. We discuss two major issues related to the embedding potential: (1) its non-uniqueness and (2) the numerical difficulty for solving for it, especially for the spin-polarized systems. To resolve the first issue, we extend DFET to finite temperature: all quantities, such as the subsystem densities and the total system’s density, are calculated at a finite temperature. This is a physical extension since materials work at finite temperatures. We show that the embedding potential is strictly unique at T > 0. To resolve the second issue, wemore »