skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A 2500 deg 2 CMB Lensing Map from Combined South Pole Telescope and Planck Data

Abstract

We present a cosmic microwave background (CMB) lensing map produced from a linear combination of South Pole Telescope (SPT) and \emph{Planck} temperature data. The 150 GHz temperature data from the $$2500\ {\rm deg}^{2}$$ SPT-SZ survey is combined with the \emph{Planck} 143 GHz data in harmonic space, to obtain a temperature map that has a broader $$\ell$$ coverage and less noise than either individual map. Using a quadratic estimator technique on this combined temperature map, we produce a map of the gravitational lensing potential projected along the line of sight. We measure the auto-spectrum of the lensing potential $$C_{L}^{\phi\phi}$$, and compare it to the theoretical prediction for a $$\Lambda$$CDM cosmology consistent with the \emph{Planck} 2015 data set, finding a best-fit amplitude of $$0.95_{-0.06}^{+0.06}({\rm Stat.})\! _{-0.01}^{+0.01}({\rm Sys.})$$. The null hypothesis of no lensing is rejected at a significance of $$24\,\sigma$$. One important use of such a lensing potential map is in cross-correlations with other dark matter tracers. We demonstrate this cross-correlation in practice by calculating the cross-spectrum, $$C_{L}^{\phi G}$$, between the SPT+\emph{Planck} lensing map and Wide-field Infrared Survey Explorer (\emph{WISE}) galaxies. We fit $$C_{L}^{\phi G}$$ to a power law of the form $$p_{L}=a(L/L_{0})^{-b}$$ with $$a=2.15 \times 10^{-8}$$, $b=1.35$, $$L_{0}=490$$, and find $$\eta^{\phi G}=0.94^{+0.04}_{-0.04}$$, which is marginally lower, but in good agreement with $$\eta^{\phi G}=1.00^{+0.02}_{-0.01}$$, the best-fit amplitude for the cross-correlation of \emph{Planck}-2015 CMB lensing and \emph{WISE} galaxies over $$\sim67\%$$ of the sky. The lensing potential map presented here will be used for cross-correlation studies with the Dark Energy Survey (DES), whose footprint nearly completely covers the SPT $$2500\ {\rm deg}^2$$ field.

Authors:
ORCiD logo; ; ORCiD logo; ; ; ; ; ; ; ; ; ORCiD logo; ; ; ; ; ORCiD logo; ; ; ORCiD logo more »; ; ; ; ; ; ; ; ORCiD logo; ORCiD logo; ; ; ; ; ; ; ; ORCiD logo; ; ; ; ; ; ; ; ORCiD logo; ; « less
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25); National Science Foundation (NSF); Gordon and Betty Moore Foundation; USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1410514
Alternate Identifier(s):
OSTI ID: 1358105; OSTI ID: 1418209; OSTI ID: 1420120; OSTI ID: 1426762
Report Number(s):
FERMILAB-PUB-17-140-AE; arXiv:1705.00743
Journal ID: ISSN 1538-4357; 1597533
Grant/Contract Number:
AC02-07CH11359; AC02-76SF00515; PLR-124809; PHY-0114422; AC02-06CH11357; AC02-05CH11231
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
The Astrophysical Journal (Online)
Additional Journal Information:
Journal Name: The Astrophysical Journal (Online); Journal Volume: 849; Journal Issue: 2; Journal ID: ISSN 1538-4357
Publisher:
Institute of Physics (IOP)
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; cosmic background radiation; gravitational lensing: weak; large-scale structure of universe; Gravitational lensing : general —

Citation Formats

Omori, Y., Chown, R., Simard, G., Story, K. T., Aylor, K., Baxter, E. J., Benson, B. A., Bleem, L. E., Carlstrom, J. E., Chang, C. L., Cho, H-M., Crawford, T. M., Crites, A. T., Haan, T. de, Dobbs, M. A., Everett, W. B., George, E. M., Halverson, N. W., Harrington, N. L., Holder, G. P., Hou, Z., Holzapfel, W. L., Hrubes, J. D., Knox, L., Lee, A. T., Leitch, E. M., Luong-Van, D., Manzotti, A., Marrone, D. P., McMahon, J. J., Meyer, S. S., Mocanu, L. M., Mohr, J. J., Natoli, T., Padin, S., Pryke, C., Reichardt, C. L., Ruhl, J. E., Sayre, J. T., Schaffer, K. K., Shirokoff, E., Staniszewski, Z., Stark, A. A., Vanderlinde, K., Vieira, J. D., Williamson, R., and Zahn, O. A 2500 deg 2 CMB Lensing Map from Combined South Pole Telescope and Planck Data. United States: N. p., 2017. Web. doi:10.3847/1538-4357/aa8d1d.
Omori, Y., Chown, R., Simard, G., Story, K. T., Aylor, K., Baxter, E. J., Benson, B. A., Bleem, L. E., Carlstrom, J. E., Chang, C. L., Cho, H-M., Crawford, T. M., Crites, A. T., Haan, T. de, Dobbs, M. A., Everett, W. B., George, E. M., Halverson, N. W., Harrington, N. L., Holder, G. P., Hou, Z., Holzapfel, W. L., Hrubes, J. D., Knox, L., Lee, A. T., Leitch, E. M., Luong-Van, D., Manzotti, A., Marrone, D. P., McMahon, J. J., Meyer, S. S., Mocanu, L. M., Mohr, J. J., Natoli, T., Padin, S., Pryke, C., Reichardt, C. L., Ruhl, J. E., Sayre, J. T., Schaffer, K. K., Shirokoff, E., Staniszewski, Z., Stark, A. A., Vanderlinde, K., Vieira, J. D., Williamson, R., & Zahn, O. A 2500 deg 2 CMB Lensing Map from Combined South Pole Telescope and Planck Data. United States. doi:10.3847/1538-4357/aa8d1d.
Omori, Y., Chown, R., Simard, G., Story, K. T., Aylor, K., Baxter, E. J., Benson, B. A., Bleem, L. E., Carlstrom, J. E., Chang, C. L., Cho, H-M., Crawford, T. M., Crites, A. T., Haan, T. de, Dobbs, M. A., Everett, W. B., George, E. M., Halverson, N. W., Harrington, N. L., Holder, G. P., Hou, Z., Holzapfel, W. L., Hrubes, J. D., Knox, L., Lee, A. T., Leitch, E. M., Luong-Van, D., Manzotti, A., Marrone, D. P., McMahon, J. J., Meyer, S. S., Mocanu, L. M., Mohr, J. J., Natoli, T., Padin, S., Pryke, C., Reichardt, C. L., Ruhl, J. E., Sayre, J. T., Schaffer, K. K., Shirokoff, E., Staniszewski, Z., Stark, A. A., Vanderlinde, K., Vieira, J. D., Williamson, R., and Zahn, O. Tue . "A 2500 deg 2 CMB Lensing Map from Combined South Pole Telescope and Planck Data". United States. doi:10.3847/1538-4357/aa8d1d.
@article{osti_1410514,
title = {A 2500 deg 2 CMB Lensing Map from Combined South Pole Telescope and Planck Data},
author = {Omori, Y. and Chown, R. and Simard, G. and Story, K. T. and Aylor, K. and Baxter, E. J. and Benson, B. A. and Bleem, L. E. and Carlstrom, J. E. and Chang, C. L. and Cho, H-M. and Crawford, T. M. and Crites, A. T. and Haan, T. de and Dobbs, M. A. and Everett, W. B. and George, E. M. and Halverson, N. W. and Harrington, N. L. and Holder, G. P. and Hou, Z. and Holzapfel, W. L. and Hrubes, J. D. and Knox, L. and Lee, A. T. and Leitch, E. M. and Luong-Van, D. and Manzotti, A. and Marrone, D. P. and McMahon, J. J. and Meyer, S. S. and Mocanu, L. M. and Mohr, J. J. and Natoli, T. and Padin, S. and Pryke, C. and Reichardt, C. L. and Ruhl, J. E. and Sayre, J. T. and Schaffer, K. K. and Shirokoff, E. and Staniszewski, Z. and Stark, A. A. and Vanderlinde, K. and Vieira, J. D. and Williamson, R. and Zahn, O.},
abstractNote = {We present a cosmic microwave background (CMB) lensing map produced from a linear combination of South Pole Telescope (SPT) and \emph{Planck} temperature data. The 150 GHz temperature data from the $2500\ {\rm deg}^{2}$ SPT-SZ survey is combined with the \emph{Planck} 143 GHz data in harmonic space, to obtain a temperature map that has a broader $\ell$ coverage and less noise than either individual map. Using a quadratic estimator technique on this combined temperature map, we produce a map of the gravitational lensing potential projected along the line of sight. We measure the auto-spectrum of the lensing potential $C_{L}^{\phi\phi}$, and compare it to the theoretical prediction for a $\Lambda$CDM cosmology consistent with the \emph{Planck} 2015 data set, finding a best-fit amplitude of $0.95_{-0.06}^{+0.06}({\rm Stat.})\! _{-0.01}^{+0.01}({\rm Sys.})$. The null hypothesis of no lensing is rejected at a significance of $24\,\sigma$. One important use of such a lensing potential map is in cross-correlations with other dark matter tracers. We demonstrate this cross-correlation in practice by calculating the cross-spectrum, $C_{L}^{\phi G}$, between the SPT+\emph{Planck} lensing map and Wide-field Infrared Survey Explorer (\emph{WISE}) galaxies. We fit $C_{L}^{\phi G}$ to a power law of the form $p_{L}=a(L/L_{0})^{-b}$ with $a=2.15 \times 10^{-8}$, $b=1.35$, $L_{0}=490$, and find $\eta^{\phi G}=0.94^{+0.04}_{-0.04}$, which is marginally lower, but in good agreement with $\eta^{\phi G}=1.00^{+0.02}_{-0.01}$, the best-fit amplitude for the cross-correlation of \emph{Planck}-2015 CMB lensing and \emph{WISE} galaxies over $\sim67\%$ of the sky. The lensing potential map presented here will be used for cross-correlation studies with the Dark Energy Survey (DES), whose footprint nearly completely covers the SPT $2500\ {\rm deg}^2$ field.},
doi = {10.3847/1538-4357/aa8d1d},
journal = {The Astrophysical Journal (Online)},
number = 2,
volume = 849,
place = {United States},
year = {Tue Nov 07 00:00:00 EST 2017},
month = {Tue Nov 07 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on November 7, 2018
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share: