skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A 2500 deg 2 CMB Lensing Map from Combined South Pole Telescope and Planck Data

Abstract

Here, we present a cosmic microwave background (CMB) lensing map produced from a linear combination of South Pole Telescope (SPT) and Planck temperature data. The 150 GHz temperature data from the 2500 deg 2 SPT-SZ survey is combined with the Planck 143 GHz data in harmonic space to obtain a temperature map that has a broader ℓ coverage and less noise than either individual map. Using a quadratic estimator technique on this combined temperature map, we produce a map of the gravitational lensing potential projected along the line of sight. We measure the auto-spectrum of the lensing potential $${C}_{L}^{\phi \phi }$$, and compare it to the theoretical prediction for a ΛCDM cosmology consistent with the Planck 2015 data set, finding a best-fit amplitude of $${0.95}_{-0.06}^{+0.06}(\mathrm{stat}.{)}_{-0.01}^{+0.01}(\mathrm{sys}.)$$. The null hypothesis of no lensing is rejected at a significance of 24σ. One important use of such a lensing potential map is in cross-correlations with other dark matter tracers. We demonstrate this cross-correlation in practice by calculating the cross-spectrum, $${C}_{L}^{\phi G}$$, between the SPT+Planck lensing map and Wide-field Infrared Survey Explorer (WISE) galaxies. We fit $${C}_{L}^{\phi G}$$ to a power law of the form $${p}_{L}=a{(L/{L}_{0})}^{-b}$$ with a, L 0, and b fixed, and find $${\eta }^{\phi G}={C}_{L}^{\phi G}/{p}_{L}={0.94}_{-0.04}^{+0.04}$$, which is marginally lower, but in good agreement with $${\eta }^{\phi G}={1.00}_{-0.01}^{+0.02}$$, the best-fit amplitude for the cross-correlation of Planck-2015 CMB lensing and WISE galaxies over ~67% of the sky. Finally, the lensing potential map presented here will be used for cross-correlation studies with the Dark Energy Survey, whose footprint nearly completely covers the SPT 2500 deg 2 field.

Authors:
ORCiD logo [1];  [1]; ORCiD logo [1];  [2];  [3];  [4];  [5];  [6];  [7];  [8];  [9]; ORCiD logo [10];  [11];  [12];  [13];  [14]; ORCiD logo [15];  [16];  [17]; ORCiD logo [18] more »;  [10];  [17];  [19];  [3];  [20];  [10];  [19]; ORCiD logo [10]; ORCiD logo [21];  [22];  [23];  [10];  [24];  [25];  [10];  [26]; ORCiD logo [27];  [28];  [29];  [30];  [31];  [32];  [33];  [34]; ORCiD logo [35];  [10];  [36] « less
  1. McGill Univ., Montreal, QC (Canada). Dept of Physics and McGill Space Inst.
  2. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics; Univ. of Chicago, IL (United States). Dept. of Physics; Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; Stanford Univ., CA (United States). Dept. of Physics
  3. Univ. of California, Davis, CA (United States). Dept. of Physics
  4. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics; Univ. of Pennsylvania, Philadelphia, PA (United States). Center for Particle Cosmology, Dept. of Physics and Astronomy; Univ. of Chicago, IL (United States). Dept. of Astronomy and Astrophysics
  5. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics; Univ. of Chicago, IL (United States). Dept. of Astronomy and Astrophysics; Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
  6. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics; Argonne National Lab. (ANL), Argonne, IL (United States). High Energy Physics Division
  7. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics; Univ. of Chicago, IL (United States). Dept. of Physics; Univ. of Chicago, IL (United States). Dept. of Astronomy and Astrophysics; Argonne National Lab. (ANL), Argonne, IL (United States). High Energy Physics Division; Univ. of Chicago, IL (United States). Enrico Fermi Inst.
  8. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics; Univ. of Chicago, IL (United States). Dept. of Astronomy and Astrophysics; Argonne National Lab. (ANL), Argonne, IL (United States). High Energy Physics Division
  9. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  10. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics; Univ. of Chicago, IL (United States). Dept. of Astronomy and Astrophysics
  11. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics; Univ. of Chicago, IL (United States). Dept. of Astronomy and Astrophysics; California Inst. of Technology, Pasadena, CA (United States)
  12. McGill Univ., Montreal, QC (Canada). Dept of Physics and McGill Space Inst.; Univ. of California, Berkeley, CA (United States). Dept. of Physics
  13. McGill Univ., Montreal, QC (Canada). Dept of Physics and McGill Space Inst.; Canadian Inst. for Advanced Research, Toronto, ON (Canada). CIFAR Program in Cosmology and Gravity
  14. Univ. of Colorado, Boulder, CO (United States). Center for Astrophysics and Space Astronomy, Dept. of Astrophysical and Planetary Sciences
  15. Univ. of California, Berkeley, CA (United States). Dept. of Physics; European Southern Observatory, Garching (Germany)
  16. Univ. of Colorado, Boulder, CO (United States). Center for Astrophysics and Space Astronomy, Dept. of Astrophysical and Planetary Sciences; Univ. of Colorado, Boulder, CO (United States). Dept. of Physics
  17. Univ. of California, Berkeley, CA (United States). Dept. of Physics
  18. McGill Univ., Montreal, QC (Canada). Dept of Physics and McGill Space Inst.; Canadian Inst. for Advanced Research, Toronto, ON (Canada). CIFAR Program in Cosmology and Gravity; Univ. of Illinois, Urbana-Champaign, IL (United States). Astronomy Dept.; Univ. of Illinois, Urbana-Champaign, IL (United States). Dept. of Physics
  19. Univ. of Chicago, IL (United States)
  20. Univ. of California, Berkeley, CA (United States). Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Physics Division
  21. Univ. of Arizona, Tucson, AZ (United States). Steward Observatory
  22. Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Physics
  23. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics; Univ. of Chicago, IL (United States). Dept. of Physics; Univ. of Chicago, IL (United States). Dept. of Astronomy and Astrophysics; Univ. of Chicago, IL (United States). Enrico Fermi Inst.
  24. Ludwig Maximilians Univ., Munchen (Germany); Excellence Cluster Universe, Garching (Germany); Max Planck Inst. fur Extraterrestrische Physik, Garching (Germany)
  25. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics (KICP); Univ. of Chicago, IL (United States). Dept. of Physics; Univ. of Toronto, ON (Canada). Dunlap Inst. for Astronomy & Astrophysics
  26. Univ. of Minnesota, Minneapolis, MN (United States). Dept. of Physics
  27. Univ. of California, Berkeley, CA (United States). Dept. of Physics; Univ. of Melbourne (Australia). School of Physics
  28. Case Western Reserve Univ., Cleveland, OH (United States). Center for Education and Research in Cosmology and Astrophysics, Dept. of Physics
  29. Univ. of Colorado, Boulder, CO (United States). Center for Astrophysics and Space Astronomy, Dept. of Astrophysical and Planetary Sciences; Case Western Reserve Univ., Cleveland, OH (United States). Center for Education and Research in Cosmology and Astrophysics, Dept. of Physics
  30. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics; Univ. of Chicago, IL (United States). Enrico Fermi Inst.; School of the Art Institute of Chicago, IL (United States). Liberal Arts Dept.
  31. Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics; Univ. of Chicago, IL (United States). Dept. of Astronomy and Astrophysics; Univ. of California, Berkeley, CA (United States). Dept. of Physics
  32. Case Western Reserve Univ., Cleveland, OH (United States). Center for Education and Research in Cosmology and Astrophysics, Dept. of Physics; California Inst. of Technology (CalTech), La Canada Flintridge, CA (United States). Jet Propulsion Lab.
  33. Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States)
  34. Univ. of Toronto, ON (Canada). Dunlap Inst. for Astronomy & Astrophysics; Univ. of Toronto, ON (Canada). Dept. of Astronomy & Astrophysics
  35. Univ. of Illinois, Urbana-Champaign, IL (United States). Astronomy Dept. ; Univ. of Illinois, Urbana-Champaign, IL (United States). Dept. of Physics
  36. Univ. of California, Berkeley, CA (United States). Berkeley Center for Cosmological Physics, Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Argonne National Lab. (ANL), Argonne, IL (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)
Sponsoring Org.:
National Science Foundation (NSF); USDOE Office of Science (SC), High Energy Physics (HEP) (SC-25); Gordon and Betty Moore Foundation; USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1410514
Alternate Identifier(s):
OSTI ID: 1358105; OSTI ID: 1418209; OSTI ID: 1420120; OSTI ID: 1426762
Report Number(s):
FERMILAB-PUB-17-140-AE; arXiv:1705.00743
Journal ID: ISSN 1538-4357; TRN: US1800117
Grant/Contract Number:  
AC02-76SF00515; PLR-124809; PHY-0114422; AC02-07CH11359; AC02-06CH11357; AC02-05CH11231
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
The Astrophysical Journal (Online)
Additional Journal Information:
Journal Volume: 849; Journal Issue: 2; Journal ID: ISSN 1538-4357
Publisher:
Institute of Physics (IOP)
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; cosmic background radiation; gravitational lensing: weak; large-scale structure of universe; Gravitational lensing : general —

Citation Formats

Omori, Y., Chown, R., Simard, G., Story, K. T., Aylor, K., Baxter, E. J., Benson, B. A., Bleem, L. E., Carlstrom, J. E., Chang, C. L., Cho, H-M., Crawford, T. M., Crites, A. T., Haan, T. de, Dobbs, M. A., Everett, W. B., George, E. M., Halverson, N. W., Harrington, N. L., Holder, G. P., Hou, Z., Holzapfel, W. L., Hrubes, J. D., Knox, L., Lee, A. T., Leitch, E. M., Luong-Van, D., Manzotti, A., Marrone, D. P., McMahon, J. J., Meyer, S. S., Mocanu, L. M., Mohr, J. J., Natoli, T., Padin, S., Pryke, C., Reichardt, C. L., Ruhl, J. E., Sayre, J. T., Schaffer, K. K., Shirokoff, E., Staniszewski, Z., Stark, A. A., Vanderlinde, K., Vieira, J. D., Williamson, R., and Zahn, O. A 2500 deg2 CMB Lensing Map from Combined South Pole Telescope and Planck Data. United States: N. p., 2017. Web. doi:10.3847/1538-4357/aa8d1d.
Omori, Y., Chown, R., Simard, G., Story, K. T., Aylor, K., Baxter, E. J., Benson, B. A., Bleem, L. E., Carlstrom, J. E., Chang, C. L., Cho, H-M., Crawford, T. M., Crites, A. T., Haan, T. de, Dobbs, M. A., Everett, W. B., George, E. M., Halverson, N. W., Harrington, N. L., Holder, G. P., Hou, Z., Holzapfel, W. L., Hrubes, J. D., Knox, L., Lee, A. T., Leitch, E. M., Luong-Van, D., Manzotti, A., Marrone, D. P., McMahon, J. J., Meyer, S. S., Mocanu, L. M., Mohr, J. J., Natoli, T., Padin, S., Pryke, C., Reichardt, C. L., Ruhl, J. E., Sayre, J. T., Schaffer, K. K., Shirokoff, E., Staniszewski, Z., Stark, A. A., Vanderlinde, K., Vieira, J. D., Williamson, R., & Zahn, O. A 2500 deg2 CMB Lensing Map from Combined South Pole Telescope and Planck Data. United States. doi:10.3847/1538-4357/aa8d1d.
Omori, Y., Chown, R., Simard, G., Story, K. T., Aylor, K., Baxter, E. J., Benson, B. A., Bleem, L. E., Carlstrom, J. E., Chang, C. L., Cho, H-M., Crawford, T. M., Crites, A. T., Haan, T. de, Dobbs, M. A., Everett, W. B., George, E. M., Halverson, N. W., Harrington, N. L., Holder, G. P., Hou, Z., Holzapfel, W. L., Hrubes, J. D., Knox, L., Lee, A. T., Leitch, E. M., Luong-Van, D., Manzotti, A., Marrone, D. P., McMahon, J. J., Meyer, S. S., Mocanu, L. M., Mohr, J. J., Natoli, T., Padin, S., Pryke, C., Reichardt, C. L., Ruhl, J. E., Sayre, J. T., Schaffer, K. K., Shirokoff, E., Staniszewski, Z., Stark, A. A., Vanderlinde, K., Vieira, J. D., Williamson, R., and Zahn, O. Tue . "A 2500 deg2 CMB Lensing Map from Combined South Pole Telescope and Planck Data". United States. doi:10.3847/1538-4357/aa8d1d. https://www.osti.gov/servlets/purl/1410514.
@article{osti_1410514,
title = {A 2500 deg2 CMB Lensing Map from Combined South Pole Telescope and Planck Data},
author = {Omori, Y. and Chown, R. and Simard, G. and Story, K. T. and Aylor, K. and Baxter, E. J. and Benson, B. A. and Bleem, L. E. and Carlstrom, J. E. and Chang, C. L. and Cho, H-M. and Crawford, T. M. and Crites, A. T. and Haan, T. de and Dobbs, M. A. and Everett, W. B. and George, E. M. and Halverson, N. W. and Harrington, N. L. and Holder, G. P. and Hou, Z. and Holzapfel, W. L. and Hrubes, J. D. and Knox, L. and Lee, A. T. and Leitch, E. M. and Luong-Van, D. and Manzotti, A. and Marrone, D. P. and McMahon, J. J. and Meyer, S. S. and Mocanu, L. M. and Mohr, J. J. and Natoli, T. and Padin, S. and Pryke, C. and Reichardt, C. L. and Ruhl, J. E. and Sayre, J. T. and Schaffer, K. K. and Shirokoff, E. and Staniszewski, Z. and Stark, A. A. and Vanderlinde, K. and Vieira, J. D. and Williamson, R. and Zahn, O.},
abstractNote = {Here, we present a cosmic microwave background (CMB) lensing map produced from a linear combination of South Pole Telescope (SPT) and Planck temperature data. The 150 GHz temperature data from the 2500 deg2 SPT-SZ survey is combined with the Planck 143 GHz data in harmonic space to obtain a temperature map that has a broader ℓ coverage and less noise than either individual map. Using a quadratic estimator technique on this combined temperature map, we produce a map of the gravitational lensing potential projected along the line of sight. We measure the auto-spectrum of the lensing potential ${C}_{L}^{\phi \phi }$, and compare it to the theoretical prediction for a ΛCDM cosmology consistent with the Planck 2015 data set, finding a best-fit amplitude of ${0.95}_{-0.06}^{+0.06}(\mathrm{stat}.{)}_{-0.01}^{+0.01}(\mathrm{sys}.)$. The null hypothesis of no lensing is rejected at a significance of 24σ. One important use of such a lensing potential map is in cross-correlations with other dark matter tracers. We demonstrate this cross-correlation in practice by calculating the cross-spectrum, ${C}_{L}^{\phi G}$, between the SPT+Planck lensing map and Wide-field Infrared Survey Explorer (WISE) galaxies. We fit ${C}_{L}^{\phi G}$ to a power law of the form ${p}_{L}=a{(L/{L}_{0})}^{-b}$ with a, L 0, and b fixed, and find ${\eta }^{\phi G}={C}_{L}^{\phi G}/{p}_{L}={0.94}_{-0.04}^{+0.04}$, which is marginally lower, but in good agreement with ${\eta }^{\phi G}={1.00}_{-0.01}^{+0.02}$, the best-fit amplitude for the cross-correlation of Planck-2015 CMB lensing and WISE galaxies over ~67% of the sky. Finally, the lensing potential map presented here will be used for cross-correlation studies with the Dark Energy Survey, whose footprint nearly completely covers the SPT 2500 deg2 field.},
doi = {10.3847/1538-4357/aa8d1d},
journal = {The Astrophysical Journal (Online)},
issn = {1538-4357},
number = 2,
volume = 849,
place = {United States},
year = {2017},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 9 works
Citation information provided by
Web of Science

Save / Share: