skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Optimizing Convolutional Neural Networks for Cloud Detection

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. ORNL
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Oak Ridge Leadership Computing Facility (OLCF)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1410196
DOE Contract Number:  
AC05-00OR22725
Resource Type:
Conference
Resource Relation:
Conference: Machine Learning in High Performance Computing Environments (MLHPC) - Denver, Colorado, United States of America - 11/13/2017 10:00:00 AM-11/13/2017 10:00:00 AM
Country of Publication:
United States
Language:
English

Citation Formats

Johnston, Travis, Young, Steven R., Hughes, David, Patton, Robert M., and White, Devin A. Optimizing Convolutional Neural Networks for Cloud Detection. United States: N. p., 2017. Web. doi:10.1145/3146347.3146352.
Johnston, Travis, Young, Steven R., Hughes, David, Patton, Robert M., & White, Devin A. Optimizing Convolutional Neural Networks for Cloud Detection. United States. doi:10.1145/3146347.3146352.
Johnston, Travis, Young, Steven R., Hughes, David, Patton, Robert M., and White, Devin A. Wed . "Optimizing Convolutional Neural Networks for Cloud Detection". United States. doi:10.1145/3146347.3146352.
@article{osti_1410196,
title = {Optimizing Convolutional Neural Networks for Cloud Detection},
author = {Johnston, Travis and Young, Steven R. and Hughes, David and Patton, Robert M. and White, Devin A.},
abstractNote = {},
doi = {10.1145/3146347.3146352},
journal = {},
number = ,
volume = ,
place = {United States},
year = {2017},
month = {11}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:

Works referenced in this record:

Bag-of-Words and Object-Based Classification for Cloud Extraction From Satellite Imagery
journal, August 2015

  • Yuan, Yi; Hu, Xiangyun
  • IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 8, Issue 8
  • DOI: 10.1109/JSTARS.2015.2431676

Scene Learning for Cloud Detection on Remote-Sensing Images
journal, August 2015

  • An, Zhenyu; Shi, Zhenwei
  • IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 8, Issue 8
  • DOI: 10.1109/JSTARS.2015.2438015

Cloud Detection for High-Resolution Satellite Imagery Using Machine Learning and Multi-Feature Fusion
journal, August 2016

  • Bai, Ting; Li, Deren; Sun, Kaimin
  • Remote Sensing, Vol. 8, Issue 9
  • DOI: 10.3390/rs8090715

A multi-temporal method for cloud detection, applied to FORMOSAT-2, VENµS, LANDSAT and SENTINEL-2 images
journal, August 2010


Combining Pixel- and Object-Based Machine Learning for Identification of Water-Body Types From Urban High-Resolution Remote-Sensing Imagery
journal, May 2015

  • Huang, Xin; Xie, Cong; Fang, Xing
  • IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 8, Issue 5
  • DOI: 10.1109/JSTARS.2015.2420713

Selection of the 1.375-µm MODIS Channel for Remote Sensing of Cirrus Clouds and Stratospheric Aerosols from Space
journal, December 1995


Face recognition: a convolutional neural-network approach
journal, January 1997

  • Lawrence, S.; Giles, C. L.
  • IEEE Transactions on Neural Networks, Vol. 8, Issue 1
  • DOI: 10.1109/72.554195

Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images
journal, March 2015


Gradient-based learning applied to document recognition
journal, January 1998

  • Lecun, Y.; Bottou, L.; Bengio, Y.
  • Proceedings of the IEEE, Vol. 86, Issue 11
  • DOI: 10.1109/5.726791