skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Rate and Selectivity Control in Thioether and Alkene Oxidation with H 2 O 2 over Phosphonate-Modified Niobium(V)-Silica Catalysts

Journal Article · · ChemCatChem
 [1]; ORCiD logo [1]
  1. Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd. Evanston IL 60208 USA

Supported metal oxide catalysts are versatile materials for liquid-phase oxidations, including alkene epoxidation and thioether sulfoxidation with H2O2. Periodic trends in H2O2 activation was recently demonstrated for alkene epoxidation, highlighting Nb-SiO2 as a more active and selective catalyst than Ti-SiO2. Three representative catalysts are studied consisting of NbV, TiIV, and ZrIV on silica, each made through a molecular precursor approach that yields highly dispersed oxide sites, for thioanisole oxidation by H2O2. Initial rates trend Nb>Ti>>Zr, as for epoxidation, and Nb outperforms Ti for a number of other thioethers. In contrast, selectivity to sulfoxide vs. sulfone trends Ti>Nb>>Zr at all conversions. Modifying the Nb-SiO2 catalyst with phenylphosphonic acid does not completely remove sulfoxidation reactivity, as it did for photooxidation and epoxidation, and results in an unusual material active for sulfoxidation but neither epoxidation nor overoxidation to the sulfone.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Organization:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI ID:
1410111
Journal Information:
ChemCatChem, Vol. 9, Issue 19; ISSN 1867-3880
Publisher:
ChemPubSoc Europe
Country of Publication:
United States
Language:
ENGLISH