skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Measuring and Modeling the Earth's Gravity - Introduction to Ground-Based Gravity Surveys and Analysis of Local Gravity Data

Abstract

We can measure changes in gravity from place to place on the earth. These measurements require careful recording of location, elevation and time for each reading. These readings must be adjusted for known effects (such as elevation, latitude, tides) that can bias our data and mask the signal of interest. After making corrections to our data, we can remove regional trends to obtain local Bouguer anomalies. The Bouguer anomalies arise from variations in the subsurface density structure. We can build models to explain our observations, but these models must be consistent with what is known about the local geology. Combining gravity models with other information – geologic, seismic, electromagnetic, will improve confidence in the results.

Authors:
 [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1409812
Report Number(s):
LA-UR-17-30673
DOE Contract Number:
AC52-06NA25396
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; Earth Sciences; Gravity Surveying; Analyzing Gravity Data

Citation Formats

Rowe, Charlotte Anne. Measuring and Modeling the Earth's Gravity - Introduction to Ground-Based Gravity Surveys and Analysis of Local Gravity Data. United States: N. p., 2017. Web. doi:10.2172/1409812.
Rowe, Charlotte Anne. Measuring and Modeling the Earth's Gravity - Introduction to Ground-Based Gravity Surveys and Analysis of Local Gravity Data. United States. doi:10.2172/1409812.
Rowe, Charlotte Anne. 2017. "Measuring and Modeling the Earth's Gravity - Introduction to Ground-Based Gravity Surveys and Analysis of Local Gravity Data". United States. doi:10.2172/1409812. https://www.osti.gov/servlets/purl/1409812.
@article{osti_1409812,
title = {Measuring and Modeling the Earth's Gravity - Introduction to Ground-Based Gravity Surveys and Analysis of Local Gravity Data},
author = {Rowe, Charlotte Anne},
abstractNote = {We can measure changes in gravity from place to place on the earth. These measurements require careful recording of location, elevation and time for each reading. These readings must be adjusted for known effects (such as elevation, latitude, tides) that can bias our data and mask the signal of interest. After making corrections to our data, we can remove regional trends to obtain local Bouguer anomalies. The Bouguer anomalies arise from variations in the subsurface density structure. We can build models to explain our observations, but these models must be consistent with what is known about the local geology. Combining gravity models with other information – geologic, seismic, electromagnetic, will improve confidence in the results.},
doi = {10.2172/1409812},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2017,
month =
}

Technical Report:

Save / Share:
  • During the summers of 1974 and 1975, gravity and ground magnetic surveys were made over the central part of the Mineral Mountains and vicinity, Utah. The gravity survey comprised 627 gravity stations over an area of approximately 660 sq km, and included 8 gravity profiles over the Roosevelt Hot Springs KGRA. The magnetic survey comprised over 400 magnetic stations within 4 magnetic profiles. The gravity data were compiled as a terrain-corrected Bouguer gravity anomaly map with a contour interval of 2 mgal. The gravity features include: (1) generally northward-trending gravity contours with gradients along the margins of the Mineral Range,more » indicating that the range is a horst bounded on the east and west by the Beaver and Milford valley grabens, respectively, where the Milford Valley graben shows pronounced gravity low, which indicates a valley-fill thickness of about 1.8km; and (2) a northward-trending gravity high extends along the western flank of the Mineral Range (probably caused by high-density metamorphic rocks).« less
  • During the period June to September 1976, gravity and ground magnetic surveys were made in the Thermo Hot Springs KGRA region which is located southwest of the town of Milford, Beaver County, Utah. The regional surveys comprised 273 new gravity and magnetic stations and incorporated 104 previous gravity stations over an area of approximately 620 km{sup 2}. The detailed surveys consisted of 9 east-west profiles in the immediate vicinity of the Thermo Hot Springs KGRA. The gravity data were reduced and are presented as terrain-corrected Bouguer gravity anomaly maps. Terrain corrections were made to a distance of 18.8 km. Themore » regional gravity map shows the following features: (1) a large north-south trend with total relief of 5 mgal extending through the central portion of the study area; (2) an east-west trend with relief of about 7-8 mgal south of the Star Range and Shauntie Hills; (3) a north-south trend with 5 mgal relief east of Blue Mountain; and (4) a broad low of approximately 5 mgal closure southwest of the Shauntie Hills. The trends are probably caused by major faults and the gravity low is probably caused by the southern end of the Wah Wah Valley graben. The detailed gravity map indicates two possible east-west trending faults intersecting a major north-south trending fault in the immediate vicinity of the Thermo Hot Springs. The location of the hot springs appears to be fault controlled. To facilitate interpretation of the gravity data, the following processing and modeling techniques were used: (1) high-pass frequency filtering; (2) polynomial fitting; (3) second derivative; (4) strike filtering; (5) two-dimensional modeling; and (6) three-dimensional modeling. These techniques proved helpful as they more clearly delineated features of interest. The residual maps outlined an elongate north-south graben that extends through the survey area. The strike-filtered maps emphasize the major north-south and east-west faults of the region. Modeling provided reasonable depth estimates for bedrock in the vicinity of the hot springs and supported the structural interpretation for the hot springs area. The magnetic data are presented as total magnetic intensity anomaly maps for both the regional and detailed surveys. The regional map delineates a magnetic high with 600-gammas closure that corresponds to a Tertiary quartz monzonite intrusive in the northeast part of the survey area. An east-west trend with about 300-gammas relief is delineated south of the Shauntie Hills and Star Range and possibly corresponds to an east-west fault. The detailed magnetic map outlines an anomalous low with nearly 100-gammas closure associated with the Thermo Hot Springs. This magnetic low may reflect an alteration zone which is structurally controlled. The following processing and modeling techniques were applied to aid interpretation of the magnetic data: (1) low-pass frequency filtering; (2) strike-filtering; (3) pseudogravity; (4) two and one-half dimensional modeling; and (5) three-dimensional modeling. The low-pass filtering clearly delineates the intrusive and the east-west trend south of the Star Range. The strike-filtering outlines north-south and east-west trends which correlate with faults implied by gravity data. The pseudogravity map indicates that the magnetic and gravity anomalies are not caused by the same bodies. The two and one-half dimensional modeling in the hot springs area provides a possible model for an alteration zone which appears to be structurally controlled. The three-dimensional model of the Tertiary quartz monzonite intrusive indicates a relatively shallow, slightly elongate intrusion that continues to a depth of at least 1 km.« less
  • Regional gravity data were collected in portions of the Pavant Range, Tushar Mountains, northern Sevier Plateau, the Antelope Range, and throughout Sevier Valley approximately between the towns of Richfield and Junction, Utah. Additionally, detailed gravity and ground magnetic data were collected in the vicinity of hot springs in both the Monroe and Joseph Known Geothermal Resource Areas (KGRA's) and subsurface geologic models were constructed. The regional gravity data were terrain corrected out to a distance of 167 km from the station and 948 gravity station values were compiled into a complete Bouguer gravity anomaly map of the survey area. Thismore » map shows a strong correlation with most structural features mapped in the survey area. Four regional gravity profiles were modeled using two-dimensional formerd and inverse algorithms.« less
  • STAARS is a new series which is being published to disseminate information concerning statistical procedures for interpreting aerial radiometric data. The application of a particular data interpretation technique to geologic understanding for delineating regions favorable to uranium deposition is the primary concern of STAARS. Statements concerning the utility of a technique on aerial reconnaissance data as well as detailed aerial survey data will be included.
  • Structures in the pre-Tertiary basement of Yucca Flat, Nevada Test Site, Nevada, are interpreted using the basement topography and basement gravity anomaly derived from an isostatic gravity inversion model. A new fault is proposed which eliminates some of the Paleozoic carbonate section just west of the Halfpint Range. Proposed faults that offset basement surface correlate closely with magnetic anomalies caused by the offset of Tertiary volcanic rocks.