skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Use of Gene Modification and Advanced Molecular Structure Analyses towards Improving Alfalfa Forage

Abstract

Alfalfa is one of the most important legume forage crops in the world. In spite of its agronomic and nutritive advantages, alfalfa has some limitations in the usage of pasture forage and hay supplement. High rapid degradation of protein in alfalfa poses a risk of rumen bloat to ruminants which could cause huge economic losses for farmers. Coupled with the relatively high lignin content, which impedes the degradation of carbohydrate in rumen, alfalfa has unbalanced and asynchronous degradation ratio of nitrogen to carbohydrate (N/CHO) in rumen. Genetic engineering approaches have been used to manipulate the expression of genes involved in important metabolic pathways for the purpose of improving the nutritive value, forage yield, and the ability to resist abiotic stress. Such gene modification could bring molecular structural changes in alfalfa that are detectable by advanced structural analytical techniques. These structural analyses have been employed in assessing alfalfa forage characteristics, allowing for rapid, convenient and cost-effective analysis of alfalfa forage quality. In this article, we review two major obstacles facing alfalfa utilization, namely poor protein utilization and relatively high lignin content, and highlight genetic studies that were performed to overcome these drawbacks, as well as to introduce other improvements to alfalfamore » quality. We also review the use of advanced molecular structural analysis in the assessment of alfalfa forage for its potential usage in quality selection in alfalfa breeding.« less

Authors:
; ;
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1409628
Report Number(s):
BNL-114680-2017-JA¿¿¿
Journal ID: ISSN 1422-0067; IJMCFK
DOE Contract Number:
SC0012704
Resource Type:
Journal Article
Resource Relation:
Journal Name: International Journal of Molecular Sciences (Online); Journal Volume: 18; Journal Issue: 2
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; 60 APPLIED LIFE SCIENCES

Citation Formats

Lei, Yaogeng, Hannoufa, Abdelali, and Yu, Peiqiang. The Use of Gene Modification and Advanced Molecular Structure Analyses towards Improving Alfalfa Forage. United States: N. p., 2017. Web. doi:10.3390/ijms18020298.
Lei, Yaogeng, Hannoufa, Abdelali, & Yu, Peiqiang. The Use of Gene Modification and Advanced Molecular Structure Analyses towards Improving Alfalfa Forage. United States. doi:10.3390/ijms18020298.
Lei, Yaogeng, Hannoufa, Abdelali, and Yu, Peiqiang. Sun . "The Use of Gene Modification and Advanced Molecular Structure Analyses towards Improving Alfalfa Forage". United States. doi:10.3390/ijms18020298.
@article{osti_1409628,
title = {The Use of Gene Modification and Advanced Molecular Structure Analyses towards Improving Alfalfa Forage},
author = {Lei, Yaogeng and Hannoufa, Abdelali and Yu, Peiqiang},
abstractNote = {Alfalfa is one of the most important legume forage crops in the world. In spite of its agronomic and nutritive advantages, alfalfa has some limitations in the usage of pasture forage and hay supplement. High rapid degradation of protein in alfalfa poses a risk of rumen bloat to ruminants which could cause huge economic losses for farmers. Coupled with the relatively high lignin content, which impedes the degradation of carbohydrate in rumen, alfalfa has unbalanced and asynchronous degradation ratio of nitrogen to carbohydrate (N/CHO) in rumen. Genetic engineering approaches have been used to manipulate the expression of genes involved in important metabolic pathways for the purpose of improving the nutritive value, forage yield, and the ability to resist abiotic stress. Such gene modification could bring molecular structural changes in alfalfa that are detectable by advanced structural analytical techniques. These structural analyses have been employed in assessing alfalfa forage characteristics, allowing for rapid, convenient and cost-effective analysis of alfalfa forage quality. In this article, we review two major obstacles facing alfalfa utilization, namely poor protein utilization and relatively high lignin content, and highlight genetic studies that were performed to overcome these drawbacks, as well as to introduce other improvements to alfalfa quality. We also review the use of advanced molecular structural analysis in the assessment of alfalfa forage for its potential usage in quality selection in alfalfa breeding.},
doi = {10.3390/ijms18020298},
journal = {International Journal of Molecular Sciences (Online)},
number = 2,
volume = 18,
place = {United States},
year = {Sun Jan 29 00:00:00 EST 2017},
month = {Sun Jan 29 00:00:00 EST 2017}
}
  • To date there has been very little application of synchrotron radiation-based Fourier transform infrared microspectroscopy (SRFTIRM) to the study of molecular structures in plant forage in relation to livestock digestive behavior and nutrient availability. Protein inherent structure, among other factors such as protein matrix, affects nutritive quality, fermentation and degradation behavior in both humans and animals. The relative percentage of protein secondary structure influences protein value. A high percentage of e-sheets usually reduce the access of gastrointestinal digestive enzymes to the protein. Reduced accessibility results in poor digestibility and as a result, low protein value. The objective of this studymore » was to use SRFTIRM to compare protein molecular structure of alfalfa plant tissues transformed with the maize Lc regulatory gene with non-transgenic alfalfa protein within cellular and subcellular dimensions and to quantify protein inherent structure profiles using Gaussian and Lorentzian methods of multi-component peak modeling. Protein molecular structure revealed by this method included a-helices, e-sheets and other structures such as e-turns and random coils. Hierarchical cluster analysis and principal component analysis of the synchrotron data, as well as accurate spectral analysis based on curve fitting, showed that transgenic alfalfa contained a relatively lower (P < 0.05) percentage of the model-fitted a-helices (29 vs. 34) and model-fitted e-sheets (22 vs. 27) and a higher (P < 0.05) percentage of other model-fitted structures (49 vs. 39). Transgenic alfalfa protein displayed no difference (P > 0.05) in the ratio of a-helices to e-sheets (average: 1.4) and higher (P < 0.05) ratios of a-helices to others (0.7 vs. 0.9) and e-sheets to others (0.5 vs. 0.8) than the non-transgenic alfalfa protein. The transgenic protein structures also exhibited no difference (P > 0.05) in the vibrational intensity of protein amide I (average of 24) and amide II areas (average of 10) and their ratio (average of 2.4) compared with non-transgenic alfalfa. Cluster analysis and principal component analysis showed no significant differences between the two genotypes in the broad molecular fingerprint region, amides I and II regions, and the carbohydrate molecular region, indicating they are highly related to each other. The results suggest that transgenic Lc-alfalfa leaves contain similar proteins to non-transgenic alfalfa (because amide I and II intensities were identical), but a subtle difference in protein molecular structure after freeze drying. Further study is needed to understand the relationship between these structural profiles and biological features such as protein nutrient availability, protein bypass and digestive behavior of livestock fed with this type of forage.« less
  • Our goal is to identify the X-linked retinitis pigmentosa (XLRP) gene RP3. The location of RP3 is genetically delimited to a region of 1 Mb, distal to DXS140, CYBB and tctex-1-like gene and proximal to the gene OTC. It is currently thought that RP3 is within 40 kb of the proximal deletion breakpoint of a patient BB. However, a more proximal location of the gene, closer to OTC, is not ruled out. We initiated the isolation of the genomic region between DXS140 to OTC in YACs. One of the clones from DXS140 region (55B) is 460 kb and spans aboutmore » 200 kb at each side of BB patient`s proximal breakpoint. It contains CYBB, tctex-1-like genes and two additional CpG islands. The 55B clone has been covered by cosmid and phage subclones. Another YAC clone from the OTC region (OTCC) spans about 1 Mb and contains at least 5 CpG islands. In situ hybridization performed with OTCC showed its location in Xp21; however, several derivative cosmids map to chromosome 7, indicating that it is a chimeric YAC. No overlap is evident between 55B and OTCC. We have isolated the YAC end-sequences and isolation of clones to close the gap is in progress. Cosmids are being used for screening eye tissue cDNA libraries, mainly from retina. Screening is done by hybridization to replica filters or by cDNA enrichment methods. Several cDNA clones have been isolated and are being characterized. Exon-amplification is also being used with the cosmids and phages. Genetic analysis is being performed to determine RP3 patients from clinically indistinguishable RP2, located in Xp11.23-p11.4, and to reduce the genetic distance of current flanking markers. For this we are analyzing a number of XLRP families with established markers in the region and with new microsatellites.« less