skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: In-situ 3D visualization of composite microstructure during polymer-to-ceramic conversion

Abstract

One route for producing fiber-reinforced ceramic-matrix composites entails repeated impregnation and pyrolysis of a preceramic polymer in a fiber preform. The process relies crucially on the development of networks of contiguous cracks during pyrolysis, thereby allowing further impregnation to attain nearly-full densification. The present study employs in-situ x-ray computed tomography (XCT) to reveal in three dimensions the evolution of matrix structure during pyrolysis of a SiC-based preceramic polymer to 1200 °C. Observations are used to guide the development of a taxonomy of crack geometries and crack structures and to identify the temporal sequence of their formation. A quantitative analysis is employed to characterize effects of local microstructural dimensions on the conditions required to form cracks of various types. Complementary measurements of gas evolution and mass loss of the preceramic polymer during pyrolysis as well as changes in mass density and Young's modulus provide context for the physical changes revealed by XCT. Furthermore, the findings provide a foundation for future development of physics-based models to guide composite fabrication processes.

Authors:
ORCiD logo [1]; ORCiD logo [1]
  1. Univ. of California, Santa Barbara, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Advanced Light Source
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1409336
Grant/Contract Number:
AC02-05CH11231
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Acta Materialia
Additional Journal Information:
Journal Volume: 144; Journal Issue: C; Journal ID: ISSN 1359-6454
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; X-ray computed tomography (XCT); Polymer derived ceramic (PDC); Ceramic matrix composite (CMC); Precursor impregnation and pyrolysis (PIP); Preceramic polymer

Citation Formats

Larson, Natalie M., and Zok, Frank W. In-situ 3D visualization of composite microstructure during polymer-to-ceramic conversion. United States: N. p., 2017. Web. doi:10.1016/j.actamat.2017.10.054.
Larson, Natalie M., & Zok, Frank W. In-situ 3D visualization of composite microstructure during polymer-to-ceramic conversion. United States. doi:10.1016/j.actamat.2017.10.054.
Larson, Natalie M., and Zok, Frank W. Tue . "In-situ 3D visualization of composite microstructure during polymer-to-ceramic conversion". United States. doi:10.1016/j.actamat.2017.10.054.
@article{osti_1409336,
title = {In-situ 3D visualization of composite microstructure during polymer-to-ceramic conversion},
author = {Larson, Natalie M. and Zok, Frank W.},
abstractNote = {One route for producing fiber-reinforced ceramic-matrix composites entails repeated impregnation and pyrolysis of a preceramic polymer in a fiber preform. The process relies crucially on the development of networks of contiguous cracks during pyrolysis, thereby allowing further impregnation to attain nearly-full densification. The present study employs in-situ x-ray computed tomography (XCT) to reveal in three dimensions the evolution of matrix structure during pyrolysis of a SiC-based preceramic polymer to 1200 °C. Observations are used to guide the development of a taxonomy of crack geometries and crack structures and to identify the temporal sequence of their formation. A quantitative analysis is employed to characterize effects of local microstructural dimensions on the conditions required to form cracks of various types. Complementary measurements of gas evolution and mass loss of the preceramic polymer during pyrolysis as well as changes in mass density and Young's modulus provide context for the physical changes revealed by XCT. Furthermore, the findings provide a foundation for future development of physics-based models to guide composite fabrication processes.},
doi = {10.1016/j.actamat.2017.10.054},
journal = {Acta Materialia},
number = C,
volume = 144,
place = {United States},
year = {Tue Oct 31 00:00:00 EDT 2017},
month = {Tue Oct 31 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on October 31, 2018
Publisher's Version of Record

Save / Share:
  • Soft materials and structured polymers are extremely useful nanotechnology building blocks. Block copolymers, in particular, have served as 2D masks for nanolithography and 3D scaffolds for photonic crystals, nanoparticle fabrication, and solar cells. F or many of these applications, the precise 3 dimensional structure and the number and type of defects in the polymer is important for ultimate function. However, directly visualizing the 3D structure of a soft material from the nanometer to millimeter length scales is a significant technical challenge. Here, we propose to develop the instrumentation needed for direct 3D structure determination at near nanometer resolution throughout amore » nearly millimeter-cubed volume of a soft, potentially heterogeneous, material. This new capability will be a valuable research tool for LANL missions in chemistry, materials science, and nanoscience. Our approach to soft materials visualization builds upon exciting developments in super-resolution optical microscopy that have occurred over the past two years. To date, these new, truly revolutionary, imaging methods have been developed and almost exclusively used for biological applications. However, in addition to biological cells, these super-resolution imaging techniques hold extreme promise for direct visualization of many important nanostructured polymers and other heterogeneous chemical systems. Los Alamos has a unique opportunity to lead the development of these super-resolution imaging methods for problems of chemical rather than biological significance. While these optical methods are limited to systems transparent to visible wavelengths, we stress that many important functional chemicals such as polymers, glasses, sol-gels, aerogels, or colloidal assemblies meet this requirement, with specific examples including materials designed for optical communication, manipulation, or light-harvesting Our Research Goals are: (1) Develop the instrumentation necessary for imaging materials at {approx} 10 nm resolution over hundreds of microns in 3 spatial dimensions. Super-resolution microcopy methods based upon single molecule localization were originally limited to 2D slices. Recent advances in this field have extended these methods to three dimensions. However, the 3D rendering was limited to viewing sparsely labeled cellular structures over a z-depth of less than 1 micron. Our first goal is to extend super resolution microscopy to z-depths of hundreds of microns. This substantial improvement is needed to image polymer nanostructure over functionally relevant length scales. (2) Benchmark this instrument by studying the 3D nanostructure of diblock co-polymer morphologies. We will test and benchmark our instrument by imaging fluorescently labeled diblock copolymers, molecules that self-assemble into a variety of 3D nano-structures. We reiterate these polymers are useful for a variety of applications ranging from lithography to light harvesting.« less
  • Solid state electrolytes are a promising alternative to flammable liquid electrolytes for high-energy lithium battery applications. In this work polymer-ceramic composite electrolyte membrane with high ceramic loading (greater than 60 vol%) is fabricated using a model polymer electrolyte poly(ethylene oxide) + lithium trifluoromethane sulfonate and a lithium-conducting ceramic powder. The effects of processing methods, choice of plasticizer and varying composition on ionic conductivity of the composite electrolyte are thoroughly investigated. The physical, structural and thermal properties of the composites are exhaustively characterized. We demonstrate that aqueous spray coating followed by hot pressing is a scalable and inexpensive technique to obtainmore » composite membranes that are amazingly dense and uniform. The ionic conductivity of composites fabricated using this protocol is at least one order of magnitude higher than those made by dry milling and solution casting. The introduction of tetraethylene glycol dimethyl ether further increases the ionic conductivity. The composite electrolyte's interfacial compatibility with metallic lithium and good cyclability is verified by constructing lithium symmetrical cells. As a result, a remarkable Li + transference number of 0.79 is discovered for the composite electrolyte.« less
  • We present Li 1+nV 3O 8 (n = 0–0.2) has been extensively investigated as a cathode material for Li ion batteries because of its superior electrochemical properties including high specific energy and good rate capability. In this paper, a synchrotron based energy dispersive X-ray diffraction (EDXRD) technique was employed to profile the phase transitions and the spatial phase distribution of a Li 1.1V 3O 8 electrode during electrochemical (de)lithiation in situ and operando. As annealing temperature during the preparation of the Li 1.1V 3O 8 material has a strong influence on the morphology and crystallinity, and consequently influences the electrochemicalmore » outcomes of the material, Li 1.1V 3O 8 materials prepared at two different temperatures, 500 and 300°C (LVO500 and LVO300), were employed in this study. The EDXRD spectra of LVO500 and LVO300 cells pre-discharged at C/18, C/40 and C/150 were recorded in situ, and phase localization and relative intensity of the peaks were compared. For cells discharged at the C/18 rate, although α and β phases were distributed uniformly within the LVO500 electrode, they were localized on two sides of the LVO300 electrode. Discharging rates of C/40 and C/150 led to homogeneous β phase formation in both LVO500 and LVO300 electrodes. Furthermore, the phase distribution as a function of position and (de)lithiation extent was mapped operando as the LVO500 cell was (de)lithiated. In conclusion, the operando data indicate that (1) the lithiation reaction initiated from the side of the electrode facing the Li anode and proceeded towards the side facing the steel can, (2) during discharge the phase transformation from a Li-poor to a Li-rich α phase and the formation of a β phase can proceed simultaneously in the electrode after the first formation of a β phase, and (3) the structural evolution occurring during charging is not the reverse of that during discharge and takes place homogenously throughout the electrode.« less
  • In this work, we investigated the dominating properties of the porous materials that impact water dynamics in a polymer electrolyte membrane fuel cell (PEMFC). Visualizations of liquid water in an operating PEMFC were performed at the Canadian Light Source. A miniature fuel cell was specifically designed for X-ray imaging investigations, and an in-house image processing algorithm based on the Beer-Lambert law was developed to extract quantities of liquid water thicknesses (cm) from raw X-ray radiographs. The X-ray attenuation coefficient of water at 24 keV was measured with a calibration device to ensure accurate measurements of the liquid water thicknesses. Frommore » this experiment, the through plane distribution of the liquid water in the fuel cell was obtained.« less
  • Reconstruction of simulated microstructure from statistical microstructure descriptors attracts strong research interest due to its importance in materials design. A new methodology is presented in this paper to reconstruct robust microstructure with large number of representative volume elements which may acts as a stable input for deterministic method to simulate performance and effective properties. It is applied in carbon nanotube composite to demonstrate the capability of this method to generate robust microstructure while incorporating more statistical information on geometry, shape, anisotropy and spatial arrangement. Not only one point based statistical information, such as size, volume fraction, is taken into consideration,more » but correlation function is incorporated to cover information from geometry, shape and spatial correlation. Monte Carlo method was applied in reconstruction. Instead of using discrete image matrix, the information of geometric distribution of the nanotube composite is stored with the information of location of nanotubes. In this way, robust micrographs with large number of representative volume elements were generated for the future evaluation using finite element methods.« less