skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Uncertainty in estimates of bioenergy-induced land-use change: The impact of inconsistent land-cover datasets and land class definitions


Citation Formats

O’Banion, Bridget, Kline, Keith L., Efroymson, Rebecca Ann, Bhaduri, Budhendra L., and Singh, Nagendra. Uncertainty in estimates of bioenergy-induced land-use change: The impact of inconsistent land-cover datasets and land class definitions. United States: N. p., 2017. Web.
O’Banion, Bridget, Kline, Keith L., Efroymson, Rebecca Ann, Bhaduri, Budhendra L., & Singh, Nagendra. Uncertainty in estimates of bioenergy-induced land-use change: The impact of inconsistent land-cover datasets and land class definitions. United States.
O’Banion, Bridget, Kline, Keith L., Efroymson, Rebecca Ann, Bhaduri, Budhendra L., and Singh, Nagendra. 2017. "Uncertainty in estimates of bioenergy-induced land-use change: The impact of inconsistent land-cover datasets and land class definitions". United States. doi:.
@article{osti_1409269,
title = {Uncertainty in estimates of bioenergy-induced land-use change: The impact of inconsistent land-cover datasets and land class definitions},
author = {O’Banion, Bridget and Kline, Keith L. and Efroymson, Rebecca Ann and Bhaduri, Budhendra L. and Singh, Nagendra},
abstractNote = {},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2017,
month =
}

Book:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this book.

Save / Share:
  • A contribution to the 3rd National Climate Assessment report, discussing the following key messages: 1. Choices about land-use and land-cover patterns have affected and will continue to affect how vulnerable or resilient human communities and ecosystems are to the effects of climate change. 2. Land-use and land-cover changes affect local, regional, and global climate processes. 3. Individuals, organizations, and governments have the capacity to make land-use decisions to adapt to the effects of climate change. 4. Choices about land use and land management provide a means of reducing atmospheric greenhouse gas levels.
  • Model-based global projections of future land use and land cover (LULC) change are frequently used in environmental assessments to study the impact of LULC change on environmental services and to provide decision support for policy. These projections are characterized by a high uncertainty in terms of quantity and allocation of projected changes, which can severely impact the results of environmental assessments. In this study, we identify hotspots of uncertainty, based on 43 simulations from 11 global-scale LULC change models representing a wide range of assumptions of future biophysical and socio-economic conditions. We attribute components of uncertainty to input data, modelmore » structure, scenario storyline and a residual term, based on a regression analysis and analysis of variance. From this diverse set of models and scenarios we find that the uncertainty varies, depending on the region and the LULC type under consideration. Hotspots of uncertainty appear mainly at the edges of globally important biomes (e.g. boreal and tropical forests). Our results indicate that an important source of uncertainty in forest and pasture areas originates from different input data applied in the models. Cropland, in contrast, is more consistent among the starting conditions, while variation in the projections gradually increases over time due to diverse scenario assumptions and different modeling approaches. Comparisons at the grid cell level indicate that disagreement is mainly related to LULC type definitions and the individual model allocation schemes. We conclude that improving the quality and consistency of observational data utilized in the modeling process as well as improving the allocation mechanisms of LULC change models remain important challenges. Furthermore, current LULC representation in environmental assessments might miss the uncertainty arising from the diversity of LULC change modeling approaches and many studies ignore the uncertainty in LULC projections in assessments of LULC change impacts on climate, water resources or biodiversity.« less
  • In order to evaluate the damage caused by a single MeV ion impact, the authors prepared highly oriented pyrolytic graphite specimens, each implanted with 3.1 MeV Au, Ag, Cu and Si ions at a dose of 2.3 {times} 10{sup 11} cm{sup {minus}2} (2,300 {micro}m{sup {minus}2}). They then observed specimens by using friction force microscope, and found round regions caused by single-ion impacts on the implanted surface. The frictional force between the surface and the silicon-nitride tip increased in disordered regions. The number density of the regions differed at individual ion-implanted surface, 372 {micro}m{sup {minus}2} at the Cu-implanted surface, and 44more » {micro}m{sup {minus}2} at the Si-implanted surface. They calculated the electronic stopping power and the probability of knock-on atom generation by the nuclear collision to determine which process affected the density. They found that the difference in the number density was closely related to that of nuclear collisions.« less
  • Daily moderate rainfall events, which constitute a major portion of seasonal summer monsoon rainfall over central India, have decreased significantly during the period 1951 through 2005. On the other hand, mean and extreme near-surface daily temperature during the monsoon season have increased by a maximum of 1–1.5 °C. Using simulations made with a high-resolution regional climate model (RegCM4) and prescribed land cover of years 1950 and 2005, it is demonstrated that part of the changes in moderate rainfall events and temperature have been caused by land-use/land-cover change (LULCC), which is mostly anthropogenic. Model simulations show that the increase in seasonal mean and extreme temperature over centralmore » India coincides with the region of decrease in forest and increase in crop cover. Our results also show that LULCC alone causes warming in the extremes of daily mean and maximum temperatures by a maximum of 1–1.2 °C, which is comparable with the observed increasing trend in the extremes. Decrease in forest cover and simultaneous increase in crops not only reduces the evapotranspiration over land and large-scale convective instability, but also contributes toward decrease in moisture convergence through reduced surface roughness. These factors act together in reducing significantly the moderate rainfall events and the amount of rainfall in that category over central India. Additionally, the model simulations are repeated by removing the warming trend in sea surface temperatures over the Indian Ocean. As a result, enhanced warming at the surface and greater decrease in moderate rainfall events over central India compared to the earlier set of simulations are noticed. Results from these additional experiments corroborate our initial findings and confirm the contribution of LULCC in the decrease in moderate rainfall events and increase in daily mean and extreme temperature over India. Therefore, this study demonstrates the important implications of LULCC over India during the monsoon season. Although, the regional climate model helps in better resolving land–atmosphere feedbacks over the Indian region, the inferences do depend on the fidelity of the model in capturing the features of Indian monsoon realistically. Lastly, it is proposed that similar studies using a suite of climate models will further enrich our understanding about the role of LULCC in the Indian monsoon climate.« less
  • In this chapter we address the questions of whether and how enough biomass could be produced to make a material contribution to global energy supply on a scale and timeline that is consistent with prominent low carbon energy scenarios. We assess whether bioenergy provision necessarily conflicts with priority ecosystem services including food security for the world s poor and vulnerable populations. In order to evaluate the potential land demand for bioenergy, we developed a set of three illustrative scenarios using specified growth rates for each bioenergy sub-sector. In these illustrative scenarios, bioenergy (traditional and modern) increases from 62 EJ/yr inmore » 2010 to 100, 150 and 200 EJ/yr in 2050. Traditional bioenergy grows slowly, increasing by between 0.75% and 1% per year, from 40 EJ/yr in 2010 to 50 or 60 EJ/ yr in 2050, continuing as the dominant form of bioenergy until at least 2020. Across the three scenarios, total land demand is estimated to increase by between 52 and 200 Mha which can be compared with a range of potential land availability estimates from the literature of between 240 million hectares to over 1 billion hectares. Biomass feedstocks arise from combinations of residues and wastes, energy cropping and increased efficiency in supply chains for energy, food and materials. In addition, biomass has the unique capability of providing solid, liquid and gaseous forms of modern energy carriers that can be transformed into analogues to existing fuels. Because photosynthesis fixes carbon dioxide from the atmosphere, biomass supply chains can be configured to store at least some of the fixed carbon in forms or ways that it will not be reemitted to the atmosphere for considerable periods of time, so-called negative emissions pathways. These attributes provide opportunities for bioenergy policies to promote longterm and sustainable options for the supply of energy for the foreseeable future.« less