skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Confocal Raman Microscopy for the Determination of Protein and Quaternary Ammonium Ion Loadings in Biocatalytic Membranes for Electrochemical Energy Conversion and Storage

Abstract

Here, the need to immobilize active enzyme, while ensuring high rates of substrate turnover and electronic charge transfer with an electrode, is a centrally important challenge in the field of bioelectrocatalysis. In this work, we demonstrate the use of confocal Raman microscopy as a tool for quantitation and molecular-scale structural characterization of ionomers and proteins within biocatalytic membranes to aid in the development of energy efficient biofuel cells. A set of recently available short side chain Aquivion ionomers spanning a range of equivalent weight (EW) suitable for enzyme immobilization was investigated. Aquivion ionomers (790 EW, 830 EW and 980 EW) received in the proton-exchanged (SO 3H) form were treated with tetra-n-butylammonium bromide (TBAB) to neutralize the ionomer and expand the size of ionic domains for enzyme incorporation. Through the use of confocal Raman microscopy, membrane TBA+ ion content was predicted in calibration studies to within a few percent of the conventional titrimetric method across the full range of TBA + : SO 3 - ratios of practical interest (0.1 to 1.7). Protein incorporation into membranes was quantified at the levels expected in biofuel cell electrodes. Furthermore, features associated with the catalytically active, enzyme-coordinated copper center were evident between 400 cmmore » -1 - 500 cm -1 in spectra of laccase catalytic membranes, demonstrating the potential to interrogate mechanistic chemistry at the enzyme active site of biocathodes under fuel cell reaction conditions. When benchmarked against the 1100 EW Nafion ionomer in glucose/air enzymatic fuel cells (EFCs), EFCs with laccase air-breathing cathodes prepared from TBA + modified Aquivion ionomers were able to reach maximum power densities (P max) up to 1.5 times higher than EFCs constructed with cathodes prepared from TBA + modified Nafion. The improved performance of EFCs containing the short side chain Aquivion ionomers relative to Nafion is traced to effects of ionomer ion-exchange capacity (IEC, where IEC = EW -1), where the greater density of SO 3 - moieties in the Aquivion materials produces an environment more favourable to mass transport and higher TBA + concentrations.« less

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [2]
  1. Univ. of Utah, Salt Lake City, UT (United States)
  2. Univ. of Utah, Salt Lake City, UT (United States); Texas Tech Univ., Lubbock, TX (United States)
Publication Date:
Research Org.:
Univ. of Utah, Salt Lake City, UT (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
Contributing Org.:
Texas Tech University, Lubbock, TX 79416
OSTI Identifier:
1408778
Grant/Contract Number:
FG03-93ER14333
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Analytical Chemistry
Additional Journal Information:
Journal Volume: 89; Journal Issue: 24; Journal ID: ISSN 0003-2700
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; 36 MATERIALS SCIENCE; membrane separations; fuel cells; biocatalysis

Citation Formats

Cai, Rong, Abdellaoui, Sofiene, Kitt, Jay P., Irvine, Cullen, Harris, Joel M., Minteer, Shelley D., and Korzeniewski, Carol. Confocal Raman Microscopy for the Determination of Protein and Quaternary Ammonium Ion Loadings in Biocatalytic Membranes for Electrochemical Energy Conversion and Storage. United States: N. p., 2017. Web. doi:10.1021/acs.analchem.7b03380.
Cai, Rong, Abdellaoui, Sofiene, Kitt, Jay P., Irvine, Cullen, Harris, Joel M., Minteer, Shelley D., & Korzeniewski, Carol. Confocal Raman Microscopy for the Determination of Protein and Quaternary Ammonium Ion Loadings in Biocatalytic Membranes for Electrochemical Energy Conversion and Storage. United States. doi:10.1021/acs.analchem.7b03380.
Cai, Rong, Abdellaoui, Sofiene, Kitt, Jay P., Irvine, Cullen, Harris, Joel M., Minteer, Shelley D., and Korzeniewski, Carol. Tue . "Confocal Raman Microscopy for the Determination of Protein and Quaternary Ammonium Ion Loadings in Biocatalytic Membranes for Electrochemical Energy Conversion and Storage". United States. doi:10.1021/acs.analchem.7b03380.
@article{osti_1408778,
title = {Confocal Raman Microscopy for the Determination of Protein and Quaternary Ammonium Ion Loadings in Biocatalytic Membranes for Electrochemical Energy Conversion and Storage},
author = {Cai, Rong and Abdellaoui, Sofiene and Kitt, Jay P. and Irvine, Cullen and Harris, Joel M. and Minteer, Shelley D. and Korzeniewski, Carol},
abstractNote = {Here, the need to immobilize active enzyme, while ensuring high rates of substrate turnover and electronic charge transfer with an electrode, is a centrally important challenge in the field of bioelectrocatalysis. In this work, we demonstrate the use of confocal Raman microscopy as a tool for quantitation and molecular-scale structural characterization of ionomers and proteins within biocatalytic membranes to aid in the development of energy efficient biofuel cells. A set of recently available short side chain Aquivion ionomers spanning a range of equivalent weight (EW) suitable for enzyme immobilization was investigated. Aquivion ionomers (790 EW, 830 EW and 980 EW) received in the proton-exchanged (SO3H) form were treated with tetra-n-butylammonium bromide (TBAB) to neutralize the ionomer and expand the size of ionic domains for enzyme incorporation. Through the use of confocal Raman microscopy, membrane TBA+ ion content was predicted in calibration studies to within a few percent of the conventional titrimetric method across the full range of TBA+ : SO3- ratios of practical interest (0.1 to 1.7). Protein incorporation into membranes was quantified at the levels expected in biofuel cell electrodes. Furthermore, features associated with the catalytically active, enzyme-coordinated copper center were evident between 400 cm-1 - 500 cm-1 in spectra of laccase catalytic membranes, demonstrating the potential to interrogate mechanistic chemistry at the enzyme active site of biocathodes under fuel cell reaction conditions. When benchmarked against the 1100 EW Nafion ionomer in glucose/air enzymatic fuel cells (EFCs), EFCs with laccase air-breathing cathodes prepared from TBA+ modified Aquivion ionomers were able to reach maximum power densities (Pmax) up to 1.5 times higher than EFCs constructed with cathodes prepared from TBA+ modified Nafion. The improved performance of EFCs containing the short side chain Aquivion ionomers relative to Nafion is traced to effects of ionomer ion-exchange capacity (IEC, where IEC = EW-1), where the greater density of SO3- moieties in the Aquivion materials produces an environment more favourable to mass transport and higher TBA+ concentrations.},
doi = {10.1021/acs.analchem.7b03380},
journal = {Analytical Chemistry},
number = 24,
volume = 89,
place = {United States},
year = {Tue Nov 14 00:00:00 EST 2017},
month = {Tue Nov 14 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on November 14, 2018
Publisher's Version of Record

Save / Share:
  • The optical absorbance produced by mixing Nb/sup 5+/ with pyrogallol in a slightly alkaline solution is increased approximately 60% by the presence of a long-chain quaternary ammonium compound. In addition, the interferences from Mo/ sup 6+/, W/sup 4+/, and Cr/sup 6+ can be virtually eliminated and that from V/sup 5+/ halved by an extraction of the Nb complex with ethyl acetate. Ta accompanies Nb but, by selection of the wavelength, interference from moderate amounts can be minimized. Interference by Ti is very serious but somewhat less than in the original procedure of Hunt and Wells. (auth)
  • Graphene has attracted extensive research interest due to its strictly 2-dimensional (2D) structure, which results in its unique electronic, thermal, mechanical, and chemical properties and potential technical applications. These remarkable characteristics of graphene, along with the inherent benefits of a carbon material, make it a promising candidate for application in electrochemical energy devices. This article reviews the methods of graphene preparation, introduces the unique electrochemical behavior of graphene, and summarizes the recent research and development on graphene-based fuel cells, supercapacitors and lithium ion batteries. In addition, promising areas are identified for the future development of graphene-based materials in electrochemical energymore » conversion and storage systems.« less
  • Piezoelectric force microscopy (PFM) and Raman confocal microscopy have been used for studying the nanodomain structures in congruent LiNbO{sub 3} and LiTaO{sub 3} crystals. The high-resolution nanodomain images at the surface were observed via PFM. Raman confocal microscopy has been used for the visualization of the nanodomain structures in the bulk via layer-by-layer scanning at various depths. It has been shown experimentally that the nanodomain images obtained at different depths correspond to domain images at the polar surface obtained at different moments: the deeper the nanodomain, the earlier the moment. Such a correlation was applied for the reconstruction of themore » evolution of the domain structures with charged domain walls. The studied domain structures were obtained in highly non-equilibrium switching conditions realized in LiNbO{sub 3} and LiTaO{sub 3} via pulse laser irradiation and the electric field poling of LiNbO{sub 3}, with the surface layer modified by ion implantation. The revealed main stages of the domain structure evolution allow the authors to demonstrate that all geometrically different nanodomain structures observed in LiNbO{sub 3} and LiTaO{sub 3} appeared as a result of discrete switching.« less
  • The limiting reduction and oxidation potentials and electrolytic conductivities of new quaternary ammonium salts were examined for electrochemical capacitor applications, whose anions have already been tested as lithium salts for lithium battery applications. The anodic stability was in the following order BR{sub 4}{sup {minus}} < ClO{sub 4}{sup {minus}} {le} CF{sub 3}SO{sub 3}{sup {minus}} < (CF{sub 3}SO{sub 2}){sub 2}N{sup {minus}} {le} C{sub 4}F{sub 9}SO{sub 3}{sup {minus}} < BF{sub 4}{sup {minus}} < PF{sub 6}{sup {minus}} {le} AsF{sub 6}{sup {minus}} < SbF{sub 6}{sup {minus}}. The electrolytic conductivities of Me{sub 4{minus}n}Et{sub n}N(CF{sub 3}SO{sub 2}){sub 2}N (n = 0--4) were examined in comparison with Me{submore » 4{minus}n}Et{sub n}NBF{sub 4} counterparts. These imide salts showed good solubility, relatively high conductivity, and anodic stability in propylene carbonate. Et{sub 4}N(CF{sub 3}SO{sub 2}){sub 2}N was found to be a good supporting salt for low permittivity organic solvents, and it afforded a highly conductive electrolyte system based on the ethylene carbonate-dimethyl carbonate mixed solvent, which is useful for electrochemical capacitor applications.« less
  • The authors describe an iterative image restoration technique which functions as digital confocal microscopy for Raman images. We deconvolute the lateral and axial components of the microscope point spread function from a series of optical sections, to generate a stack of well-resolved Raman images which describe the three-dimensional topology of a sample. The technique provides an alternative to confocal microscopy for three-dimensional microscopic Raman imaging. 20 refs., 4 figs.