skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Verification and validation of a rapid heat transfer calculation methodology for transient melt pool solidification conditions in powder bed metal additive manufacturing

Abstract

A fundamental understanding of spatial and temporal thermal distributions is crucial for predicting solidification and solid-state microstructural development in parts made by additive manufacturing. While sophisticated numerical techniques that are based on finite element or finite volume methods are useful for gaining insight into these phenomena at the length scale of the melt pool (100 - 500 µm), they are ill-suited for predicting engineering trends over full part cross-sections (> 10 x 10 cm) or many layers over long process times (> many days) due to the necessity of fully resolving the heat source characteristics. On the other hand, it is extremely difficult to resolve the highly dynamic nature of the process using purely in-situ characterization techniques. This article proposes a pragmatic alternative based on a semi-analytical approach to predicting the transient heat conduction during powder bed metal additive manufacturing process. The model calculations were theoretically verified for selective laser melting of AlSi10Mg and electron beam melting of IN718 powders for simple cross-sectional geometries and the transient results are compared to steady state predictions from the Rosenthal equation. It is shown that the transient effects of the scan strategy create significant variations in the melt pool geometry and solid-liquid interfacemore » velocity, especially as the thermal diffusivity of the material decreases and the pre-heat of the process increases. With positive verification of the strategy, the model was then experimentally validated to simulate two point-melt scan strategies during electron beam melting of IN718, one intended to produce a columnar and one an equiaxed grain structure. Lastly, through comparison of the solidification conditions (i.e. transient and spatial variations of thermal gradient and liquid-solid interface velocity) predicted by the model to phenomenological CET theory, the model accurately predicted the experimental grain structures.« less

Authors:
 [1];  [2];  [3]
  1. Univ. of Tennessee, Knoxville, TN (United States). Dept. of Mechanical,Aerospace and Biomedical Engineering
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Manufacturing Demonstration Facility; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Materials Science & Technology Division
  3. Univ. of Tennessee, Knoxville, TN (United States). Dept. of Mechanical,Aerospace and Biomedical Engineering; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Manufacturing Demonstration Facility; Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Energy and Transportation Science Division
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Advanced Manufacturing Office (EE-5A)
OSTI Identifier:
1408593
Grant/Contract Number:
AC05-00OR22725
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Additive Manufacturing
Additional Journal Information:
Journal Volume: 18; Journal Issue: C; Journal ID: ISSN 2214-8604
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 42 ENGINEERING; 97 MATHEMATICS AND COMPUTING; Additive manufacturing; Heat transfer; Heat conduction; Modeling; Grain structure; Process-structure relationships; SLM; EBM

Citation Formats

Plotkowski, A., Kirka, M. M., and Babu, S. S.. Verification and validation of a rapid heat transfer calculation methodology for transient melt pool solidification conditions in powder bed metal additive manufacturing. United States: N. p., 2017. Web. doi:10.1016/j.addma.2017.10.017.
Plotkowski, A., Kirka, M. M., & Babu, S. S.. Verification and validation of a rapid heat transfer calculation methodology for transient melt pool solidification conditions in powder bed metal additive manufacturing. United States. doi:10.1016/j.addma.2017.10.017.
Plotkowski, A., Kirka, M. M., and Babu, S. S.. Mon . "Verification and validation of a rapid heat transfer calculation methodology for transient melt pool solidification conditions in powder bed metal additive manufacturing". United States. doi:10.1016/j.addma.2017.10.017.
@article{osti_1408593,
title = {Verification and validation of a rapid heat transfer calculation methodology for transient melt pool solidification conditions in powder bed metal additive manufacturing},
author = {Plotkowski, A. and Kirka, M. M. and Babu, S. S.},
abstractNote = {A fundamental understanding of spatial and temporal thermal distributions is crucial for predicting solidification and solid-state microstructural development in parts made by additive manufacturing. While sophisticated numerical techniques that are based on finite element or finite volume methods are useful for gaining insight into these phenomena at the length scale of the melt pool (100 - 500 µm), they are ill-suited for predicting engineering trends over full part cross-sections (> 10 x 10 cm) or many layers over long process times (> many days) due to the necessity of fully resolving the heat source characteristics. On the other hand, it is extremely difficult to resolve the highly dynamic nature of the process using purely in-situ characterization techniques. This article proposes a pragmatic alternative based on a semi-analytical approach to predicting the transient heat conduction during powder bed metal additive manufacturing process. The model calculations were theoretically verified for selective laser melting of AlSi10Mg and electron beam melting of IN718 powders for simple cross-sectional geometries and the transient results are compared to steady state predictions from the Rosenthal equation. It is shown that the transient effects of the scan strategy create significant variations in the melt pool geometry and solid-liquid interface velocity, especially as the thermal diffusivity of the material decreases and the pre-heat of the process increases. With positive verification of the strategy, the model was then experimentally validated to simulate two point-melt scan strategies during electron beam melting of IN718, one intended to produce a columnar and one an equiaxed grain structure. Lastly, through comparison of the solidification conditions (i.e. transient and spatial variations of thermal gradient and liquid-solid interface velocity) predicted by the model to phenomenological CET theory, the model accurately predicted the experimental grain structures.},
doi = {10.1016/j.addma.2017.10.017},
journal = {Additive Manufacturing},
number = C,
volume = 18,
place = {United States},
year = {Mon Oct 16 00:00:00 EDT 2017},
month = {Mon Oct 16 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on October 16, 2018
Publisher's Version of Record

Save / Share:
  • Our study demonstrates the significant effect of the recoil pressure and Marangoni convection in laser powder bed fusion (L-PBF) of 316L stainless steel. A three-dimensional high fidelity powder-scale model reveals how the strong dynamical melt flow generates pore defects, material spattering (sparking), and denudation zones. The melt track is divided into three sections: a topological depression, a transition and a tail region, each being the location of specific physical effects. The inclusion of laser ray-tracing energy deposition in the powder-scale model improves over traditional volumetric energy deposition. It enables partial particle melting, which impacts pore defects in the denudation zone.more » Different pore formation mechanisms are observed at the edge of a scan track, at the melt pool bottom (during collapse of the pool depression), and at the end of the melt track (during laser power ramp down). Finally, we discuss remedies to these undesirable pores are discussed. The results are validated against the experiments and the sensitivity to laser absorptivity.« less
  • The results of detailed experiments and finite element modeling of metal micro-droplet motion associated with metal additive manufacturing (AM) processes are presented. Ultra high speed imaging of melt pool dynamics reveals that the dominant mechanism leading to micro-droplet ejection in a laser powder bed fusion AM is not from laser induced recoil pressure as is widely believed and found in laser welding processes, but rather from vapor driven entrainment of micro-particles by an ambient gas flow. The physics of droplet ejection under strong evaporative flow is described using simulations of the laser powder bed interactions to elucidate the experimental results.more » Hydrodynamic drag analysis is used to augment the single phase flow model and explain the entrainment phenomenon for 316 L stainless steel and Ti-6Al-4V powder layers. The relevance of vapor driven entrainment of metal micro-particles to similar fluid dynamic studies in other fields of science will be discussed.« less
  • We report detailed understanding of the complex melt pool physics plays a vital role in predicting optimal processing regimes in laser powder bed fusion additive manufacturing. In this work, we use high framerate video recording of Selective Laser Melting (SLM) to provide useful insight on the laser-powder interaction and melt pool evolution of 316 L powder layers, while also serving as a novel instrument to quantify cooling rates of the melt pool. The experiment was performed using two powder types – one gas- and one water-atomized – to further clarify how morphological and chemical differences between these two feedstock materialsmore » influence the laser melting process. Finally, experimentally determined cooling rates are compared with values obtained through computer simulation, and the relationship between cooling rate and grain cell size is compared with data previously published in the literature.« less