skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Inferring low-dimensional microstructure representations using convolutional neural networks

Authors:
; ;
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1408180
Grant/Contract Number:  
20140013DR
Resource Type:
Journal Article: Publisher's Accepted Manuscript
Journal Name:
Physical Review E
Additional Journal Information:
Journal Name: Physical Review E Journal Volume: 96 Journal Issue: 5; Journal ID: ISSN 2470-0045
Publisher:
American Physical Society
Country of Publication:
United States
Language:
English

Citation Formats

Lubbers, Nicholas, Lookman, Turab, and Barros, Kipton. Inferring low-dimensional microstructure representations using convolutional neural networks. United States: N. p., 2017. Web. doi:10.1103/PhysRevE.96.052111.
Lubbers, Nicholas, Lookman, Turab, & Barros, Kipton. Inferring low-dimensional microstructure representations using convolutional neural networks. United States. doi:10.1103/PhysRevE.96.052111.
Lubbers, Nicholas, Lookman, Turab, and Barros, Kipton. Thu . "Inferring low-dimensional microstructure representations using convolutional neural networks". United States. doi:10.1103/PhysRevE.96.052111.
@article{osti_1408180,
title = {Inferring low-dimensional microstructure representations using convolutional neural networks},
author = {Lubbers, Nicholas and Lookman, Turab and Barros, Kipton},
abstractNote = {},
doi = {10.1103/PhysRevE.96.052111},
journal = {Physical Review E},
number = 5,
volume = 96,
place = {United States},
year = {Thu Nov 09 00:00:00 EST 2017},
month = {Thu Nov 09 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on November 9, 2018
Publisher's Accepted Manuscript

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share: