skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds

Abstract

The graphite-to-diamond transformation under shock compression has been of broad scientific interest since 1961. The formation of hexagonal diamond (HD) is of particular interest because it is expected to be harder than cubic diamond and due to its use in terrestrial sciences as a marker at meteorite impact sites. However, the formation of diamond having a fully hexagonal structure continues to be questioned and remains unresolved. Using real-time (nanosecond), in situ x-ray diffraction measurements, we show unequivocally that highly oriented pyrolytic graphite, shock-compressed along the c axis to 50 GPa, transforms to highly oriented elastically strained HD with the (100)HD plane parallel to the graphite basal plane.

Authors:
ORCiD logo; ORCiD logo; ; ORCiD logo; ORCiD logo
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1408127
Resource Type:
Journal Article
Journal Name:
Science Advances
Additional Journal Information:
Journal Volume: 3; Journal Issue: 10; Journal ID: ISSN 2375-2548
Publisher:
AAAS
Country of Publication:
United States
Language:
ENGLISH
Subject:
36 MATERIALS SCIENCE

Citation Formats

Turneaure, Stefan J., Sharma, Surinder M., Volz, Travis J., Winey, J. M., and Gupta, Yogendra M. Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds. United States: N. p., 2017. Web. doi:10.1126/sciadv.aao3561.
Turneaure, Stefan J., Sharma, Surinder M., Volz, Travis J., Winey, J. M., & Gupta, Yogendra M. Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds. United States. doi:10.1126/sciadv.aao3561.
Turneaure, Stefan J., Sharma, Surinder M., Volz, Travis J., Winey, J. M., and Gupta, Yogendra M. Sun . "Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds". United States. doi:10.1126/sciadv.aao3561.
@article{osti_1408127,
title = {Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds},
author = {Turneaure, Stefan J. and Sharma, Surinder M. and Volz, Travis J. and Winey, J. M. and Gupta, Yogendra M.},
abstractNote = {The graphite-to-diamond transformation under shock compression has been of broad scientific interest since 1961. The formation of hexagonal diamond (HD) is of particular interest because it is expected to be harder than cubic diamond and due to its use in terrestrial sciences as a marker at meteorite impact sites. However, the formation of diamond having a fully hexagonal structure continues to be questioned and remains unresolved. Using real-time (nanosecond), in situ x-ray diffraction measurements, we show unequivocally that highly oriented pyrolytic graphite, shock-compressed along the c axis to 50 GPa, transforms to highly oriented elastically strained HD with the (100)HD plane parallel to the graphite basal plane.},
doi = {10.1126/sciadv.aao3561},
journal = {Science Advances},
issn = {2375-2548},
number = 10,
volume = 3,
place = {United States},
year = {2017},
month = {10}
}

Works referenced in this record:

An Antarctic iron meteorite contains preterrestrial impact-produced diamond and lonsdaleite
journal, June 1981

  • Clarke, Roy S.; Appleman, Daniel E.; Ross, Daphne R.
  • Nature, Vol. 291, Issue 5814
  • DOI: 10.1038/291396a0

Pressure-Induced Transformation Path of Graphite to Diamond
journal, May 1995


First-principles studies of diamond polytypes
journal, March 2008


Superhard Monoclinic Polymorph of Carbon
journal, April 2009


Laser interferometer for measuring high velocities of any reflecting surface
journal, November 1972

  • Barker, L. M.; Hollenbach, R. E.
  • Journal of Applied Physics, Vol. 43, Issue 11
  • DOI: 10.1063/1.1660986

Elastic Moduli of Diamond as a Function of Pressure and Temperature
journal, July 1972

  • McSkimin, H. J.; Andreatch, P.
  • Journal of Applied Physics, Vol. 43, Issue 7
  • DOI: 10.1063/1.1661636

Compact system for high-speed velocimetry using heterodyne techniques
journal, August 2006

  • Strand, O. T.; Goosman, D. R.; Martinez, C.
  • Review of Scientific Instruments, Vol. 77, Issue 8
  • DOI: 10.1063/1.2336749

Diamond’s elastic stiffnesses from 322 K to 10 K
journal, September 2008

  • Migliori, Albert; Ledbetter, Hassel; Leisure, Robert G.
  • Journal of Applied Physics, Vol. 104, Issue 5
  • DOI: 10.1063/1.2975190

Low-Temperature Phase Transformation from Graphite to s p 3 Orthorhombic Carbon
journal, February 2011


Nanosecond formation of diamond and lonsdaleite by shock compression of graphite
journal, March 2016

  • Kraus, D.; Ravasio, A.; Gauthier, M.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10970

Molecular Dynamics Simulations of Shock Compressed Graphite
journal, June 2013

  • Pineau, Nicolas
  • The Journal of Physical Chemistry C, Vol. 117, Issue 24
  • DOI: 10.1021/jp403568m

Hexagonal Diamond—A New Form of Carbon
journal, May 1967

  • Bundy, F. P.; Kasper, J. S.
  • The Journal of Chemical Physics, Vol. 46, Issue 9
  • DOI: 10.1063/1.1841236

Nanometre-size diamonds in the Cretaceous/Tertiary boundary clay of Alberta
journal, August 1991

  • Carlisle, David Brez; Braman, Dennis R.
  • Nature, Vol. 352, Issue 6337
  • DOI: 10.1038/352708a0

Hexagonal Diamonds in Meteorites: Implications
journal, February 1967


Formation of Diamond by Explosive Shock
journal, June 1961


Shock-compressed graphite to diamond transformation on nanosecond time scales
journal, May 2013


Extent of stacking disorder in diamond
journal, October 2015


Graphite to Diamond: Origin for Kinetics Selectivity
journal, February 2017

  • Xie, Yao-Ping; Zhang, Xiao-Jie; Liu, Zhi-Pan
  • Journal of the American Chemical Society, Vol. 139, Issue 7
  • DOI: 10.1021/jacs.6b11193

Shock compression of pyrolytic graphite to 18 GPa: Role of orientational order
journal, September 2013

  • Lucas, Marcel; Winey, J. M.; Gupta, Y. M.
  • Journal of Applied Physics, Vol. 114, Issue 9
  • DOI: 10.1063/1.4820524

Hugoniot equation of state of twelve rocks
journal, October 1967

  • McQueen, R. G.; Marsh, S. P.; Fritz, J. N.
  • Journal of Geophysical Research, Vol. 72, Issue 20
  • DOI: 10.1029/JZ072i020p04999

Modified Phases of Diamond Formed Under Shock Compression and Rapid Quenching
journal, August 1991


Shock-synthesized hexagonal diamonds in Younger Dryas boundary sediments
journal, July 2009

  • Kennett, D. J.; Kennett, J. P.; West, A.
  • Proceedings of the National Academy of Sciences, Vol. 106, Issue 31
  • DOI: 10.1073/pnas.0906374106

Ultrafast transformation of graphite to diamond: An ab initio study of graphite under shock compression
journal, May 2008

  • Mundy, Christopher J.; Curioni, Alessandro; Goldman, Nir
  • The Journal of Chemical Physics, Vol. 128, Issue 18
  • DOI: 10.1063/1.2913201

Optical phonons and elasticity of diamond at megabar stresses
journal, October 1986


Light-Transparent Phase Formed by Room-Temperature Compression of Graphite
journal, June 1991


Transformation of graphite to lonsdaleite and diamond in the Goalpara ureilite directly observed by TEM
journal, March 2013


Constant-pressure first-principles studies on the transition states of the graphite-diamond transformation
journal, December 1996


New evidence of meteoritic origin of the Tunguska cosmic body
journal, August 2013

  • Kvasnytsya, Victor; Wirth, Richard; Dobrzhinetskaya, Larissa
  • Planetary and Space Science, Vol. 84
  • DOI: 10.1016/j.pss.2013.05.003

Harder than Diamond: Superior Indentation Strength of Wurtzite BN and Lonsdaleite
journal, February 2009


Detailed Structures of Hexagonal Diamond (lonsdaleite) and Wurtzite-type BN
journal, April 2003

  • Yoshiasa, Akira; Murai, Yu; Ohtaka, Osamu
  • Japanese Journal of Applied Physics, Vol. 42, Issue Part 1, No. 4A
  • DOI: 10.1143/JJAP.42.1694

Diffusionless Nucleation of Lonsdaleite and Diamond in Hexagonal Graphite under Static Compression
journal, January 2004

  • Britun, Viktor F.; Kurdyumov, Alexander V.; Petrusha dep20@ipms. kiev. ua, Igor A.
  • Powder Metallurgy and Metal Ceramics, Vol. 43, Issue 1/2
  • DOI: 10.1023/B:PMMC.0000028276.63784.8e

Man-Made Diamonds
journal, July 1955

  • Bundy, F. P.; Hall, H. T.; Strong, H. M.
  • Nature, Vol. 176, Issue 4471
  • DOI: 10.1038/176051a0

Mechanism for direct graphite-to-diamond phase transition
journal, August 2014

  • Xie, Hongxian; Yin, Fuxing; Yu, Tao
  • Scientific Reports, Vol. 4, Issue 1
  • DOI: 10.1038/srep05930

Lonsdaleite is faulted and twinned cubic diamond and does not exist as a discrete material
journal, November 2014

  • Németh, Péter; Garvie, Laurence A. J.; Aoki, Toshihiro
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6447

Bonding Changes in Compressed Superhard Graphite
journal, October 2003


Finite-element modeling of diamond deformation at multimegabar pressures
journal, February 1999

  • Merkel, Sébastien; Hemley, Russell J.; Mao, Ho-kwang
  • Applied Physics Letters, Vol. 74, Issue 5
  • DOI: 10.1063/1.123031

Shock-induced martensitic phase transformation of oriented graphite to diamond
journal, January 1991

  • Erskine, D. J.; Nellis, W. J.
  • Nature, Vol. 349, Issue 6307
  • DOI: 10.1038/349317a0

Body-Centered Tetragonal C 4 : A Viable s p 3 Carbon Allotrope
journal, March 2010


Crystal structure of graphite under room-temperature compression and decompression
journal, July 2012

  • Wang, Yuejian; Panzik, Joseph E.; Kiefer, Boris
  • Scientific Reports, Vol. 2, Issue 1
  • DOI: 10.1038/srep00520

Shock‐induced martensitic transformation of highly oriented graphite to diamond
journal, May 1992

  • Erskine, David J.; Nellis, William J.
  • Journal of Applied Physics, Vol. 71, Issue 10
  • DOI: 10.1063/1.350633

Nanocrystalline hexagonal diamond formed from glassy carbon
journal, November 2016

  • Shiell, Thomas. B.; McCulloch, Dougal G.; Bradby, Jodie E.
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep37232

High-pressure in situ x-ray-diffraction study of the phase transformation from graphite to hexagonal diamond at room temperature
journal, September 1992


Lonsdaleite, a Hexagonal Polymorph of Diamond
journal, May 1967

  • Frondel, Clifford; Marvin, Ursula B.
  • Nature, Vol. 214, Issue 5088
  • DOI: 10.1038/214587a0

Direct Conversion of Graphite to Diamond in Static Pressure Apparatus
journal, February 1963

  • Bundy, F. P.
  • The Journal of Chemical Physics, Vol. 38, Issue 3
  • DOI: 10.1063/1.1733716

Nucleation mechanism for the direct graphite-to-diamond phase transition
journal, July 2011

  • Khaliullin, Rustam Z.; Eshet, Hagai; Kühne, Thomas D.
  • Nature Materials, Vol. 10, Issue 9
  • DOI: 10.1038/nmat3078

Two-dimensional detector software: From real detector to idealised image or two-theta scan
journal, January 1996

  • Hammersley, A. P.; Svensson, S. O.; Hanfland, M.
  • High Pressure Research, Vol. 14, Issue 4-6, p. 235-248
  • DOI: 10.1080/08957959608201408