skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Method of accurate thickness measurement of boron carbide coating on copper foil

Abstract

A method is disclosed of measuring the thickness of a thin coating on a substrate comprising dissolving the coating and substrate in a reagent and using the post-dissolution concentration of the coating in the reagent to calculate an effective thickness of the coating. The preferred method includes measuring non-conducting films on flexible and rough substrates, but other kinds of thin films can be measure by matching a reliable film-substrate dissolution technique. One preferred method includes determining the thickness of Boron Carbide films deposited on copper foil. The preferred method uses a standard technique known as inductively coupled plasma optical emission spectroscopy (ICPOES) to measure boron concentration in a liquid sample prepared by dissolving boron carbide films and the Copper substrates, preferably using a chemical etch known as ceric ammonium nitrate (CAN). Measured boron concentration values can then be calculated.

Inventors:
;
Publication Date:
Research Org.:
Proportional Technologies, Inc. Houston, TX (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1407708
Patent Number(s):
9,810,635
Application Number:
14/938,903
Assignee:
Proportional Technologies, Inc. CHO
DOE Contract Number:
SC0009615
Resource Type:
Patent
Resource Relation:
Patent File Date: 2015 Nov 12
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Lacy, Jeffrey L., and Regmi, Murari. Method of accurate thickness measurement of boron carbide coating on copper foil. United States: N. p., 2017. Web.
Lacy, Jeffrey L., & Regmi, Murari. Method of accurate thickness measurement of boron carbide coating on copper foil. United States.
Lacy, Jeffrey L., and Regmi, Murari. Tue . "Method of accurate thickness measurement of boron carbide coating on copper foil". United States. doi:. https://www.osti.gov/servlets/purl/1407708.
@article{osti_1407708,
title = {Method of accurate thickness measurement of boron carbide coating on copper foil},
author = {Lacy, Jeffrey L. and Regmi, Murari},
abstractNote = {A method is disclosed of measuring the thickness of a thin coating on a substrate comprising dissolving the coating and substrate in a reagent and using the post-dissolution concentration of the coating in the reagent to calculate an effective thickness of the coating. The preferred method includes measuring non-conducting films on flexible and rough substrates, but other kinds of thin films can be measure by matching a reliable film-substrate dissolution technique. One preferred method includes determining the thickness of Boron Carbide films deposited on copper foil. The preferred method uses a standard technique known as inductively coupled plasma optical emission spectroscopy (ICPOES) to measure boron concentration in a liquid sample prepared by dissolving boron carbide films and the Copper substrates, preferably using a chemical etch known as ceric ammonium nitrate (CAN). Measured boron concentration values can then be calculated.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Nov 07 00:00:00 EST 2017},
month = {Tue Nov 07 00:00:00 EST 2017}
}

Patent:

Save / Share:
  • An apparatus and a process is disclosed for applying a boron coating to a thin foil. Preferably, the process is a continuous, in-line process for applying a coating to a thin foil comprising wrapping the foil around a rotating and translating mandrel, cleaning the foil with glow discharge in an etching chamber as the mandrel with the foil moves through the chamber, sputtering the foil with boron carbide in a sputtering chamber as the mandrel moves through the sputtering chamber, and unwinding the foil off the mandrel after it has been coated. The apparatus for applying a coating to amore » thin foil comprises an elongated mandrel. Foil preferably passes from a reel to the mandrel by passing through a seal near the initial portion of an etching chamber. The mandrel has a translation drive system for moving the mandrel forward and a rotational drive system for rotating mandrel as it moves forward. The etching chamber utilizes glow discharge on a surface of the foil as the mandrel moves through said etching chamber. A sputtering chamber, downstream of the etching chamber, applies a thin layer comprising boron onto the surface of the foil as said mandrel moves through said sputtering chamber. Preferably, the coated foil passes from the mandrel to a second reel by passing through a seal near the terminal portion of the sputtering chamber.« less
  • A process is described for manufacturing radiation shield structures of the type consisting of neutron absorbing boron carbide particles embedded in a copper matrix. The material comprises a multiplicity of particles comprising a core of boron carbide, a film of electroless copper bonded to the carbide, and a relatively thick electrodeposited copper layer bonded to the film. The particles are then consolidated to produce shield structures by hot rolling or hot pressing, with or without sintering.
  • A simple and inclusive method is proposed for accurate determination of the habit plane between bicrystals in transmission electron microscope. Whilst this method can be regarded as a variant of surface trace analysis, the major innovation lies in the improved accuracy and efficiency of foil thickness measurement, which involves a simple tilt of the thin foil about a permanent tilting axis of the specimen holder, rather than cumbersome tilt about the surface trace of the habit plane. Experimental study has been done to validate this proposed method in determining the habit plane between lamellar α{sub 2} plates and γ matrixmore » in a Ti–Al–Nb alloy. Both high accuracy (± 1°) and high precision (± 1°) have been achieved by using the new method. The source of the experimental errors as well as the applicability of this method is discussed. Some tips to minimise the experimental errors are also suggested. - Highlights: • An improved algorithm is formulated to measure the foil thickness. • Habit plane can be determined with a single tilt holder based on the new algorithm. • Better accuracy and precision within ± 1° are achievable using the proposed method. • The data for multi-facet determination can be collected simultaneously.« less
  • A method is provided for providing a carbided-tungsten-yttria coating on the interior surface of a copper vapor laser. The surface serves as a wick for the condensation of liquid copper to return the condensate to the interior of the laser for revolatilization.
  • A method is provided for providing a carbided-tungsten-yttria coating on the interior surface of a copper vapor laser. The surface serves as a wick for the condensation of liquid copper to return the condensate to the interior of the laser for revolatilization.