skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Investigation of Tank 241-AN-101 Floating Solids

Abstract

Tank 241-AN-101 is the receiver tank for retrieval of several C-Farms waste tanks, including Tanks 241-C-102 and 241-C-111. Tank 241 C 111 received first-cycle decontamination waste from the bismuth phosphate process and Plutonium and Uranium Extraction cladding waste, as well as hydraulic fluid. Three grab samples, 1AN-16-01, 1AN-16-01A, and 1AN-16-01B, were collected at the surface of Tank 241-AN-101 on April 25, 2016, after Tank 241-C-111 retrieval was completed. Floating solids were observed in the three grab samples in the 11A hot cell after the samples were received at the 222-S Laboratory. Routine chemical analyses, solid phase characterization on the floating and settled solids, semivolatile organic analysis mainly on the aqueous phase for identification of degradation products of hydraulic fluids were performed. Investigation of the floating solids is reported.

Authors:
 [1];  [1]
  1. Washington River Protection Solutions, LLC, Richland, VA (United States)
Publication Date:
Research Org.:
Hanford Site (HNF), Richland, WA (United States)
Sponsoring Org.:
USDOE Office of Environmental Management (EM)
OSTI Identifier:
1407697
Report Number(s):
RPP-RPT-59964
TRN: US1800021
DOE Contract Number:
AC27-08RV14800
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
12 MANAGEMENT OF RADIOACTIVE AND NON-RADIOACTIVE WASTES FROM NUCLEAR FACILITIES; HYDRAULIC FLUIDS; TANKS; SOLIDS; PLUTONIUM; URANIUM; BISMUTH PHOSPHATES; HOT CELLS; CLADDING; WASTES; AN-101; grab sample; hydraulic fluid; floating solids; oleate; oleic acid; trimethylol propane; saponification; emulsion; organics; semivolatile organic analysis; GC/MS

Citation Formats

Kraft, Douglas P., and Meznarich, H. K. Investigation of Tank 241-AN-101 Floating Solids. United States: N. p., 2017. Web. doi:10.2172/1407697.
Kraft, Douglas P., & Meznarich, H. K. Investigation of Tank 241-AN-101 Floating Solids. United States. doi:10.2172/1407697.
Kraft, Douglas P., and Meznarich, H. K. 2017. "Investigation of Tank 241-AN-101 Floating Solids". United States. doi:10.2172/1407697. https://www.osti.gov/servlets/purl/1407697.
@article{osti_1407697,
title = {Investigation of Tank 241-AN-101 Floating Solids},
author = {Kraft, Douglas P. and Meznarich, H. K.},
abstractNote = {Tank 241-AN-101 is the receiver tank for retrieval of several C-Farms waste tanks, including Tanks 241-C-102 and 241-C-111. Tank 241 C 111 received first-cycle decontamination waste from the bismuth phosphate process and Plutonium and Uranium Extraction cladding waste, as well as hydraulic fluid. Three grab samples, 1AN-16-01, 1AN-16-01A, and 1AN-16-01B, were collected at the surface of Tank 241-AN-101 on April 25, 2016, after Tank 241-C-111 retrieval was completed. Floating solids were observed in the three grab samples in the 11A hot cell after the samples were received at the 222-S Laboratory. Routine chemical analyses, solid phase characterization on the floating and settled solids, semivolatile organic analysis mainly on the aqueous phase for identification of degradation products of hydraulic fluids were performed. Investigation of the floating solids is reported.},
doi = {10.2172/1407697},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2017,
month =
}

Technical Report:

Save / Share:
  • This report documents the results of testing performed to determine the feasibility of using a pulsed-air mixing technology (equipment developed by Pulsair Systems, Inc., Bellevue, WA) to mix cementitious dry solids with supernatant and settled solids within a horizontal tank. The mixing technology is being considered to provide in situ stabilization of the {open_quotes}V{close_quotes} tanks at the Idaho National Engineering and Environmental Laboratory (INEEL). The testing was performed in a vessel roughly 1/6 the scale of the INEEL tanks. The tests used a fine soil to simulate settled solids and water to simulate tank supernatants. The cementitious dry materials consistedmore » of Portland cement and Aquaset-2H (a product of Fluid Tech Inc. consisting of clay and Portland cement). Two scoping tests were conducted to allow suitable mixing parameters to be selected. The scoping tests used only visual observations during grout disassembly to assess mixing performance. After the scoping tests indicated the approach may be feasible, an additional two mixing tests were conducted. In addition to visual observations during disassembly of the solidified grout, these tests included addition of chemical tracers and chemical analysis of samples to determine the degree of mixing uniformity achieved. The final two mixing tests demonstrated that the pulsed-air mixing technique is capable of producing slurries containing substantially more cementitious dry solids than indicated by the formulations suggested by INEEL staff. Including additional cement in the formulation may have benefits in terms of increasing mobilization of solids, reducing water separation during curing, and increasing the strength of the solidified product. During addition to the tank, the cementitious solids had a tendency to form clumps which broke down with continued mixing.« less
  • Liquid product monitoring is the predominant method of external leak detection where the water table is within the zone of excavation. The paper discusses the use of liquid product monitors at new and old tank installations for detecting leaks from underground hydrocarbon storage tanks. The paper discusses the site conditions under which liquid product monitors can be effectively used, conditions which may mitigate or prevent the effective use of liquid product monitors, and the construction and placement of liquid product monitoring wells. Liquid product monitors are not used to determine the rate of tank leak. The rate of tank leadmore » can be determined by other methods such as inventory or internal monitoring methods. Effective use of liquid product monitors or any other method of leak detection requires training and experience on the part of the user.« less
  • To remediate gas retention in the floating crust layer and the potential for buoyant displacement gas releases from below the crust, waste will be transferred out of Hanford Tank 241-SY-101 (SY-101) in the fall of 1999 and back-diluted with water in several steps of about 100,000 gallons each. To evaluate the effects of back-dilution on the crust a static buoyancy model is derived that predicts crust and liquid surface elevations as a function of mixing efficiency and volume of water added during transfer and back-dilution. Experimental results are presented that demonstrate the basic physics involved and verify the operation ofmore » the models. A dissolution model is also developed to evaluate the effects of dissolution of solids on crust flotation. The model includes dissolution of solids suspended in the slurry as well as in the crust layers. The inventory and location of insoluble solids after dissolution of the soluble fraction are also tracked. The buoyancy model is applied to predict the crust behavior for the first back-dilution step in SY-101. Specific concerns addressed include conditions that could cause the crust to sink and back-dilution requirements that keep the base of the crust well above the mixer pump inlet.« less
  • The U.S. Department of Energy established a reference model project to benchmark a set of marine and hydrokinetic technologies including current (tidal, open-ocean, and river) turbines and wave energy converters. The objectives of the project were to first evaluate the status of these technologies and their readiness for commercial applications. Second, to evaluate the potential cost of energy and identify cost-reduction pathways and areas where additional research could be best applied to accelerate technology development to market readiness.