skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Regulation of Nitrite Stress Response in Desulfovibrio vulgaris Hildenborough, a Model Sulfate-Reducing Bacterium

Abstract

Sulfate-reducing bacteria (SRB) are sensitive to low concentrations of nitrite, and nitrite has been used to control SRB-related biofouling in oil fields. Desulfovibrio vulgaris Hildenborough, a model SRB, carries a cytochrome c-type nitrite reductase (nrfHA) that confers resistance to low concentrations of nitrite. The regulation of this nitrite reductase has not been directly examined to date. In this study, we show that DVU0621 (NrfR), a sigma54-dependent two-component system response regulator, is the positive regulator for this operon. NrfR activates the expression of the nrfHA operon in response to nitrite stress. We also show that nrfR is needed for fitness at low cell densities in the presence of nitrite because inactivation of nrfR affects the rate of nitrite reduction. We also predict and validate the binding sites for NrfR upstream of the nrfHA operon using purified NrfR in gel shift assays. Here we discuss possible roles for NrfR in regulating nitrate reductase genes in nitrate-utilizing Desulfovibrio spp. The NrfA nitrite reductase is prevalent across several bacterial phyla and required for dissimilatory nitrite reduction. However, regulation of the nrfA gene has been studied in only a few nitrate-utilizing bacteria. Here, we show that in D. vulgaris, a bacterium that does not respiremore » nitrate, the expression of nrfHA is induced by NrfR upon nitrite stress. This is the first report of regulation of nrfA by a sigma54-dependent two-component system. Finally, our study increases our knowledge of nitrite stress responses and possibly of the regulation of nitrate reduction in SRB.« less

Authors:
 [1];  [1];  [1];  [1];  [2];  [1];  [2];  [1]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Physical Biosciences Division
  2. Univ. of Missouri, Columbia, MO (United States). Dept. of Biochemistry
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER) (SC-23)
OSTI Identifier:
1407286
DOE Contract Number:  
AC02-05CH11231
Resource Type:
Journal Article
Journal Name:
Journal of Bacteriology
Additional Journal Information:
Journal Volume: 197; Journal Issue: 21; Journal ID: ISSN 0021-9193
Publisher:
American Society for Microbiology
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES

Citation Formats

Rajeev, Lara, Chen, Amy, Kazakov, Alexey E., Luning, Eric G., Zane, Grant M., Novichkov, Pavel S., Wall, Judy D., and Mukhopadhyay, Aindrila. Regulation of Nitrite Stress Response in Desulfovibrio vulgaris Hildenborough, a Model Sulfate-Reducing Bacterium. United States: N. p., 2015. Web. doi:10.1128/JB.00319-15.
Rajeev, Lara, Chen, Amy, Kazakov, Alexey E., Luning, Eric G., Zane, Grant M., Novichkov, Pavel S., Wall, Judy D., & Mukhopadhyay, Aindrila. Regulation of Nitrite Stress Response in Desulfovibrio vulgaris Hildenborough, a Model Sulfate-Reducing Bacterium. United States. doi:10.1128/JB.00319-15.
Rajeev, Lara, Chen, Amy, Kazakov, Alexey E., Luning, Eric G., Zane, Grant M., Novichkov, Pavel S., Wall, Judy D., and Mukhopadhyay, Aindrila. Mon . "Regulation of Nitrite Stress Response in Desulfovibrio vulgaris Hildenborough, a Model Sulfate-Reducing Bacterium". United States. doi:10.1128/JB.00319-15. https://www.osti.gov/servlets/purl/1407286.
@article{osti_1407286,
title = {Regulation of Nitrite Stress Response in Desulfovibrio vulgaris Hildenborough, a Model Sulfate-Reducing Bacterium},
author = {Rajeev, Lara and Chen, Amy and Kazakov, Alexey E. and Luning, Eric G. and Zane, Grant M. and Novichkov, Pavel S. and Wall, Judy D. and Mukhopadhyay, Aindrila},
abstractNote = {Sulfate-reducing bacteria (SRB) are sensitive to low concentrations of nitrite, and nitrite has been used to control SRB-related biofouling in oil fields. Desulfovibrio vulgaris Hildenborough, a model SRB, carries a cytochrome c-type nitrite reductase (nrfHA) that confers resistance to low concentrations of nitrite. The regulation of this nitrite reductase has not been directly examined to date. In this study, we show that DVU0621 (NrfR), a sigma54-dependent two-component system response regulator, is the positive regulator for this operon. NrfR activates the expression of the nrfHA operon in response to nitrite stress. We also show that nrfR is needed for fitness at low cell densities in the presence of nitrite because inactivation of nrfR affects the rate of nitrite reduction. We also predict and validate the binding sites for NrfR upstream of the nrfHA operon using purified NrfR in gel shift assays. Here we discuss possible roles for NrfR in regulating nitrate reductase genes in nitrate-utilizing Desulfovibrio spp. The NrfA nitrite reductase is prevalent across several bacterial phyla and required for dissimilatory nitrite reduction. However, regulation of the nrfA gene has been studied in only a few nitrate-utilizing bacteria. Here, we show that in D. vulgaris, a bacterium that does not respire nitrate, the expression of nrfHA is induced by NrfR upon nitrite stress. This is the first report of regulation of nrfA by a sigma54-dependent two-component system. Finally, our study increases our knowledge of nitrite stress responses and possibly of the regulation of nitrate reduction in SRB.},
doi = {10.1128/JB.00319-15},
journal = {Journal of Bacteriology},
issn = {0021-9193},
number = 21,
volume = 197,
place = {United States},
year = {2015},
month = {8}
}

Works referenced in this record:

Respiratory nitrogen metabolism and nitrosative stress defence in ϵ-proteobacteria: the role of NssR-type transcription regulators
journal, January 2011

  • Kern, Melanie; Winkler, Christine; Simon, Jörg
  • Biochemical Society Transactions, Vol. 39, Issue 1
  • DOI: 10.1042/BST0390299

Genetic basis for nitrate resistance in Desulfovibrio strains
journal, April 2014

  • Korte, Hannah L.; Fels, Samuel R.; Christensen, Geoff A.
  • Frontiers in Microbiology, Vol. 5
  • DOI: 10.3389/fmicb.2014.00153

Critical review: Microbially influenced corrosion of buried carbon steel pipes
journal, September 2014


Distribution and regulation of nitrate and nitrite reduction by Desulfovibrio and Desulfotomaculum species
journal, February 1986

  • Mitchell, Garry J.; Jones, J. Gwynfryn; Cole, Jeffrey A.
  • Archives of Microbiology, Vol. 144, Issue 1
  • DOI: 10.1007/BF00454953

Enzymology and bioenergetics of respiratory nitrite ammonification
journal, August 2002


Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC
journal, February 2007

  • Li, Mamie Z.; Elledge, Stephen J.
  • Nature Methods, Vol. 4, Issue 3
  • DOI: 10.1038/nmeth1010

Enzymatic iron and uranium reduction by sulfate-reducing bacteria
journal, July 1993


Characterization of a heme c nitrite reductase from a non-ammonifying microorganism, Desulfovibrio vulgaris Hildenborough
journal, August 2000

  • Pereira, Inês A. C.; LeGall, Jean; Xavier, António V.
  • Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, Vol. 1481, Issue 1
  • DOI: 10.1016/S0167-4838(00)00111-4

Rapid Transposon Liquid Enrichment Sequencing (TnLE-seq) for Gene Fitness Evaluation in Underdeveloped Bacterial Systems
journal, September 2013

  • Fels, Samuel R.; Zane, Grant M.; Blake, Sean M.
  • Applied and Environmental Microbiology, Vol. 79, Issue 23
  • DOI: 10.1128/AEM.02051-13

RegPredict: an integrated system for regulon inference in prokaryotes by comparative genomics approach
journal, June 2010

  • Novichkov, P. S.; Rodionov, D. A.; Stavrovskaya, E. D.
  • Nucleic Acids Research, Vol. 38, Issue Web Server
  • DOI: 10.1093/nar/gkq531

Effect of the Deletion of qmoABC and the Promoter-Distal Gene Encoding a Hypothetical Protein on Sulfate Reduction in Desulfovibrio vulgaris Hildenborough
journal, June 2010

  • Zane, G. M.; Yen, H. -c. B.; Wall, J. D.
  • Applied and Environmental Microbiology, Vol. 76, Issue 16
  • DOI: 10.1128/AEM.00691-10

Primer3—new capabilities and interfaces
journal, June 2012

  • Untergasser, Andreas; Cutcutache, Ioana; Koressaar, Triinu
  • Nucleic Acids Research, Vol. 40, Issue 15
  • DOI: 10.1093/nar/gks596

Genomic and Physiological Characterization of the Chromate-Reducing, Aquifer-Derived Firmicute Pelosinus sp. Strain HCF1
journal, October 2012

  • Beller, Harry R.; Han, Ruyang; Karaoz, Ulas
  • Applied and Environmental Microbiology, Vol. 79, Issue 1
  • DOI: 10.1128/AEM.02496-12

DNA-affinity-purified Chip (DAP-chip) Method to Determine Gene Targets for Bacterial Two component Regulatory Systems
journal, January 2014

  • Rajeev, Lara; Luning, Eric G.; Mukhopadhyay, Aindrila
  • Journal of Visualized Experiments, Issue 89
  • DOI: 10.3791/51715

X-ray structure of the membrane-bound cytochrome c quinol dehydrogenase NrfH reveals novel haem coordination
journal, November 2006

  • Rodrigues, Maria Luisa; Oliveira, Tânia F.; Pereira, Inês A. C.
  • The EMBO Journal, Vol. 25, Issue 24
  • DOI: 10.1038/sj.emboj.7601439

WebLogo: A Sequence Logo Generator
journal, May 2004

  • Crooks, Gavin E.; Hon, Gary; Chandonia, John-Marc
  • Genome Research, Vol. 14, Issue 6, p. 1188-1190
  • DOI: 10.1101/gr.849004

Chemolithotrophic growth ofDesulfovibrio desulfuricans with hydrogen coupled to ammonification of nitrate or nitrite
journal, October 1986

  • Seitz, Hans-J�rgen; Cypionka, Heribert
  • Archives of Microbiology, Vol. 146, Issue 1
  • DOI: 10.1007/BF00690160

Impact of elevated nitrate on sulfate-reducing bacteria: a comparative Study of Desulfovibrio vulgaris
journal, May 2010

  • He, Qiang; He, Zhili; Joyner, Dominique C.
  • The ISME Journal, Vol. 4, Issue 11
  • DOI: 10.1038/ismej.2010.59

Deletion of the Desulfovibrio vulgaris Carbon Monoxide Sensor Invokes Global Changes in Transcription
journal, August 2012

  • Rajeev, L.; Hillesland, K. L.; Zane, G. M.
  • Journal of Bacteriology, Vol. 194, Issue 21
  • DOI: 10.1128/JB.00749-12

Independence of Nitrate and Nitrite Inhibition of Desulfovibrio vulgaris Hildenborough and Use of Nitrite as a Substrate for Growth
journal, January 2015

  • Korte, Hannah L.; Saini, Avneesh; Trotter, Valentine V.
  • Environmental Science & Technology, Vol. 49, Issue 2
  • DOI: 10.1021/es504484m

A Crp-Dependent Two-Component System Regulates Nitrate and Nitrite Respiration in Shewanella oneidensis
journal, December 2012


Energetic Consequences of Nitrite Stress in Desulfovibrio vulgaris Hildenborough, Inferred from Global Transcriptional Analysis
journal, June 2006

  • He, Q.; Huang, K. H.; He, Z.
  • Applied and Environmental Microbiology, Vol. 72, Issue 6
  • DOI: 10.1128/AEM.02609-05

Growth of Desulfovibrio species on Hydrogen and Sulphate as Sole Energy Source
journal, September 1981


New Family of Tungstate-Responsive Transcriptional Regulators in Sulfate-Reducing Bacteria
journal, August 2013

  • Kazakov, A. E.; Rajeev, L.; Luning, E. G.
  • Journal of Bacteriology, Vol. 195, Issue 19
  • DOI: 10.1128/JB.00679-13

Nitrite Reductase fromDesulfovibrio desulfuricans(ATCC 27774)— A Heterooligomer Heme Protein with Sulfite Reductase Activity
journal, July 1996

  • Pereira, Inês C.; Abreu, Isabel A.; Xavier, António V.
  • Biochemical and Biophysical Research Communications, Vol. 224, Issue 3
  • DOI: 10.1006/bbrc.1996.1074

Effect of nitrate and nitrite on sulfide production by two thermophilic, sulfate-reducing enrichments from an oil field in the North Sea
journal, January 2007

  • Kaster, Krista M.; Grigoriyan, Alexander; Jennneman, Gary
  • Applied Microbiology and Biotechnology, Vol. 75, Issue 1
  • DOI: 10.1007/s00253-006-0796-5

Systematic mapping of two component response regulators to gene targets in a model sulfate reducing bacterium
journal, January 2011


Physiological and Gene Expression Analysis of Inhibition of Desulfovibrio vulgaris Hildenborough by Nitrite
journal, November 2004


Hybrid Cluster Proteins and Flavodiiron Proteins Afford Protection to Desulfovibrio vulgaris upon Macrophage Infection
journal, April 2013

  • Figueiredo, M. C. O.; Lobo, S. A. L.; Sousa, S. H.
  • Journal of Bacteriology, Vol. 195, Issue 11
  • DOI: 10.1128/JB.00074-13

Psychrotolerant Sulfate-reducing Bacteria from an Oxic Freshwater Sediment Description of Desulfovibrio cuneatus sp. nov. and Desulfovibrio litoralis sp. nov.
journal, June 1998


Nitrite reductase activity of sulphate-reducing bacteria prevents their inhibition by nitrate-reducing, sulphide-oxidizing bacteria
journal, July 2003


The Nitric Oxide Reductase Activity of Cytochrome c Nitrite Reductase from Escherichia coli
journal, February 2008

  • van Wonderen, Jessica H.; Burlat, Bénédicte; Richardson, David J.
  • Journal of Biological Chemistry, Vol. 283, Issue 15
  • DOI: 10.1074/jbc.M709090200

Refined NrfA Phylogeny Improves PCR-Based nrfA Gene Detection
journal, January 2014

  • Welsh, Allana; Chee-Sanford, Joanne C.; Connor, Lynn M.
  • Applied and Environmental Microbiology, Vol. 80, Issue 7
  • DOI: 10.1128/AEM.03443-13

The NsrR Regulon of Escherichia coli K-12 Includes Genes Encoding the Hybrid Cluster Protein and the Periplasmic, Respiratory Nitrite Reductase
journal, April 2007

  • Filenko, N.; Spiro, S.; Browning, D. F.
  • Journal of Bacteriology, Vol. 189, Issue 12
  • DOI: 10.1128/JB.00080-07

Evidence-Based Annotation of Transcripts and Proteins in the Sulfate-Reducing Bacterium Desulfovibrio vulgaris Hildenborough
journal, August 2011

  • Price, M. N.; Deutschbauer, A. M.; Kuehl, J. V.
  • Journal of Bacteriology, Vol. 193, Issue 20
  • DOI: 10.1128/JB.05563-11

Gene expression analysis of the mechanism of inhibition of Desulfovibrio vulgaris Hildenborough by nitrate-reducing, sulfide-oxidizing bacteria
journal, September 2005


Octaheme nitrite reductases: Structure and properties
journal, October 2012