skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Charge-Dependent Correlations in Relativistic Heavy Ion Collisions and the Chiral Magnetic Effect

Abstract

We provide a phenomenological analysis of present experimental searches for local parity violation manifested through the Chiral Magnetic Effect. We introduce and discuss the relevant correlation functions used for the measurements. Our analysis of the available data from both RHIC and LHC shows that the present experimental evidence for the Chiral Magnetic Effect is rather ambiguous. We further discuss in some detail various background contributions due to conventional physics, which need to be understood quantitatively in order to draw a definitive conclusion about the existence of local parity violation in heavy ion collisions.

Authors:
 [1];  [2];  [3]
  1. Brookhaven National Lab. (BNL), Upton, NY (United States)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  3. Indiana Univ., Bloomington, IN (United States); Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Nuclear Physics (NP) (SC-26)
OSTI Identifier:
1407167
DOE Contract Number:
AC02-05CH11231
Resource Type:
Book
Resource Relation:
Related Information: Book Title: Strongly Interacting Matter in Magnetic Fields
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS

Citation Formats

Bzdak, Adam, Koch, Volker, and Liao, Jinfeng. Charge-Dependent Correlations in Relativistic Heavy Ion Collisions and the Chiral Magnetic Effect. United States: N. p., 2013. Web. doi:10.1007/978-3-642-37305-3_19.
Bzdak, Adam, Koch, Volker, & Liao, Jinfeng. Charge-Dependent Correlations in Relativistic Heavy Ion Collisions and the Chiral Magnetic Effect. United States. doi:10.1007/978-3-642-37305-3_19.
Bzdak, Adam, Koch, Volker, and Liao, Jinfeng. Tue . "Charge-Dependent Correlations in Relativistic Heavy Ion Collisions and the Chiral Magnetic Effect". United States. doi:10.1007/978-3-642-37305-3_19. https://www.osti.gov/servlets/purl/1407167.
@article{osti_1407167,
title = {Charge-Dependent Correlations in Relativistic Heavy Ion Collisions and the Chiral Magnetic Effect},
author = {Bzdak, Adam and Koch, Volker and Liao, Jinfeng},
abstractNote = {We provide a phenomenological analysis of present experimental searches for local parity violation manifested through the Chiral Magnetic Effect. We introduce and discuss the relevant correlation functions used for the measurements. Our analysis of the available data from both RHIC and LHC shows that the present experimental evidence for the Chiral Magnetic Effect is rather ambiguous. We further discuss in some detail various background contributions due to conventional physics, which need to be understood quantitatively in order to draw a definitive conclusion about the existence of local parity violation in heavy ion collisions.},
doi = {10.1007/978-3-642-37305-3_19},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Jan 01 00:00:00 EST 2013},
month = {Tue Jan 01 00:00:00 EST 2013}
}

Book:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this book.

Save / Share:
  • Charge-dependent azimuthal particle correlations with respect to the second-order event plane in p-Pb and PbPb collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV have been studied with the CMS experiment at the LHC. We performed the measurement with a three-particle correlation technique, using two particles with the same or opposite charge within the pseudorapidity range |η|<2.4, and a third particle measured in the hadron forward calorimeters (4.4<|η|<5). We also observed differences between the same and opposite sign correlations, as functions of multiplicity and η gap between the two charged particles, and found that they were of similar magnitude in p-Pbmore » and PbPb collisions at the same multiplicities. Our results pose a challenge for the interpretation of charge-dependent azimuthal correlations in heavy ion collisions in terms of the chiral magnetic effect.« less
  • Charge-dependent azimuthal particle correlations with respect to the second-order event plane in p-Pb and PbPb collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV have been studied with the CMS experiment at the LHC. We performed the measurement with a three-particle correlation technique, using two particles with the same or opposite charge within the pseudorapidity range |η|<2.4, and a third particle measured in the hadron forward calorimeters (4.4<|η|<5). We also observed differences between the same and opposite sign correlations, as functions of multiplicity and η gap between the two charged particles, and found that they were of similar magnitude in p-Pbmore » and PbPb collisions at the same multiplicities. Our results pose a challenge for the interpretation of charge-dependent azimuthal correlations in heavy ion collisions in terms of the chiral magnetic effect.« less
  • Charge-dependent azimuthal correlations of same- and opposite-sign pairs with respect to the second- and third-order event planes have been measured in pPb collisions at sNN=8.16TeV and PbPb collisions at 5.02 TeV with the CMS experiment at the LHC. The measurement is motivated by the search for the charge separation phenomenon predicted by the chiral magnetic effect (CME) in heavy ion collisions. Three- and two-particle azimuthal correlators are extracted as functions of the pseudorapidity difference, the transverse momentum (pT) difference, and the pT average of same- and opposite-charge pairs in various event multiplicity ranges. The data suggest that the charge-dependent three-particle correlatorsmore » with respect to the second- and third-order event planes share a common origin, predominantly arising from charge-dependent two-particle azimuthal correlations coupled with an anisotropic flow. The CME is expected to lead to a v2-independent three-particle correlation when the magnetic field is fixed. Using an event shape engineering technique, upper limits on the v2-independent fraction of the three-particle correlator are estimated to be 13% for pPb and 7% for PbPb collisions at 95% confidence level. The results of this analysis, both the dominance of two-particle correlations as a source of the three-particle results and the similarities seen between PbPb and pPb, provide stringent constraints on the origin of charge-dependent three-particle azimuthal correlations and challenge their interpretation as arising from a chiral magnetic effect in heavy ion collisions.« less
  • Charge-dependent azimuthal correlations of same- and opposite-sign pairs with respect to the second- and third-order event planes have been measured in pPb collisions at sNN=8.16TeV and PbPb collisions at 5.02 TeV with the CMS experiment at the LHC. The measurement is motivated by the search for the charge separation phenomenon predicted by the chiral magnetic effect (CME) in heavy ion collisions. Three- and two-particle azimuthal correlators are extracted as functions of the pseudorapidity difference, the transverse momentum (pT) difference, and the pT average of same- and opposite-charge pairs in various event multiplicity ranges. The data suggest that the charge-dependent three-particle correlatorsmore » with respect to the second- and third-order event planes share a common origin, predominantly arising from charge-dependent two-particle azimuthal correlations coupled with an anisotropic flow. The CME is expected to lead to a v2-independent three-particle correlation when the magnetic field is fixed. Using an event shape engineering technique, upper limits on the v2-independent fraction of the three-particle correlator are estimated to be 13% for pPb and 7% for PbPb collisions at 95% confidence level. The results of this analysis, both the dominance of two-particle correlations as a source of the three-particle results and the similarities seen between PbPb and pPb, provide stringent constraints on the origin of charge-dependent three-particle azimuthal correlations and challenge their interpretation as arising from a chiral magnetic effect in heavy ion collisions.« less