skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. II. UV, Optical, and Near-infrared Light Curves and Comparison to Kilonova Models

Authors:
ORCiD logo; ORCiD logo; ORCiD logo; ; ORCiD logo; ; ; ORCiD logo; ORCiD logo; ORCiD logo; ; ; ; ; ; ; ; ; ; more »; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1407127
DOE Contract Number:
AC02-76SF00515
Resource Type:
Journal Article
Resource Relation:
Journal Name: The Astrophysical Journal. Letters; Journal Volume: 848; Journal Issue: 2
Country of Publication:
United States
Language:
English

Citation Formats

Cowperthwaite, P. S., Berger, E., Villar, V. A., Metzger, B. D., Nicholl, M., Chornock, R., Blanchard, P. K., Fong, W., Margutti, R., Soares-Santos, M., Alexander, K. D., Allam, S., Annis, J., Brout, D., Brown, D. A., Butler, R. E., Chen, H. -Y., Diehl, H. T., Doctor, Z., Drout, M. R., Eftekhari, T., Farr, B., Finley, D. A., Foley, R. J., Frieman, J. A., Fryer, C. L., García-Bellido, J., Gill, M. S. S., Guillochon, J., Herner, K., Holz, D. E., Kasen, D., Kessler, R., Marriner, J., Matheson, T., Neilsen, E. H., Quataert, E., Palmese, A., Rest, A., Sako, M., Scolnic, D. M., Smith, N., Tucker, D. L., Williams, P. K. G., Balbinot, E., Carlin, J. L., Cook, E. R., Durret, F., Li, T. S., Lopes, P. A. A., Lourenço, A. C. C., Marshall, J. L., Medina, G. E., Muir, J., Muñoz, R. R., Sauseda, M., Schlegel, D. J., Secco, L. F., Vivas, A. K., Wester, W., Zenteno, A., Zhang, Y., Abbott, T. M. C., Banerji, M., Bechtol, K., Benoit-Lévy, A., Bertin, E., Buckley-Geer, E., Burke, D. L., Capozzi, D., Carnero Rosell, A., Carrasco Kind, M., Castander, F. J., Crocce, M., Cunha, C. E., D’Andrea, C. B., Costa, L. N. da, Davis, C., DePoy, D. L., Desai, S., Dietrich, J. P., Drlica-Wagner, A., Eifler, T. F., Evrard, A. E., Fernandez, E., Flaugher, B., Fosalba, P., Gaztanaga, E., Gerdes, D. W., Giannantonio, T., Goldstein, D. A., Gruen, D., Gruendl, R. A., Gutierrez, G., Honscheid, K., Jain, B., James, D. J., Jeltema, T., Johnson, M. W. G., Johnson, M. D., Kent, S., Krause, E., Kron, R., Kuehn, K., Nuropatkin, N., Lahav, O., Lima, M., Lin, H., Maia, M. A. G., March, M., Martini, P., McMahon, R. G., Menanteau, F., Miller, C. J., Miquel, R., Mohr, J. J., Neilsen, E., Nichol, R. C., Ogando, R. L. C., Plazas, A. A., Roe, N., Romer, A. K., Roodman, A., Rykoff, E. S., Sanchez, E., Scarpine, V., Schindler, R., Schubnell, M., Sevilla-Noarbe, I., Smith, M., Smith, R. C., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., Thomas, R. C., Troxel, M. A., Vikram, V., Walker, A. R., Wechsler, R. H., Weller, J., Yanny, B., and Zuntz, J. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. II. UV, Optical, and Near-infrared Light Curves and Comparison to Kilonova Models. United States: N. p., 2017. Web. doi:10.3847/2041-8213/aa8fc7.
Cowperthwaite, P. S., Berger, E., Villar, V. A., Metzger, B. D., Nicholl, M., Chornock, R., Blanchard, P. K., Fong, W., Margutti, R., Soares-Santos, M., Alexander, K. D., Allam, S., Annis, J., Brout, D., Brown, D. A., Butler, R. E., Chen, H. -Y., Diehl, H. T., Doctor, Z., Drout, M. R., Eftekhari, T., Farr, B., Finley, D. A., Foley, R. J., Frieman, J. A., Fryer, C. L., García-Bellido, J., Gill, M. S. S., Guillochon, J., Herner, K., Holz, D. E., Kasen, D., Kessler, R., Marriner, J., Matheson, T., Neilsen, E. H., Quataert, E., Palmese, A., Rest, A., Sako, M., Scolnic, D. M., Smith, N., Tucker, D. L., Williams, P. K. G., Balbinot, E., Carlin, J. L., Cook, E. R., Durret, F., Li, T. S., Lopes, P. A. A., Lourenço, A. C. C., Marshall, J. L., Medina, G. E., Muir, J., Muñoz, R. R., Sauseda, M., Schlegel, D. J., Secco, L. F., Vivas, A. K., Wester, W., Zenteno, A., Zhang, Y., Abbott, T. M. C., Banerji, M., Bechtol, K., Benoit-Lévy, A., Bertin, E., Buckley-Geer, E., Burke, D. L., Capozzi, D., Carnero Rosell, A., Carrasco Kind, M., Castander, F. J., Crocce, M., Cunha, C. E., D’Andrea, C. B., Costa, L. N. da, Davis, C., DePoy, D. L., Desai, S., Dietrich, J. P., Drlica-Wagner, A., Eifler, T. F., Evrard, A. E., Fernandez, E., Flaugher, B., Fosalba, P., Gaztanaga, E., Gerdes, D. W., Giannantonio, T., Goldstein, D. A., Gruen, D., Gruendl, R. A., Gutierrez, G., Honscheid, K., Jain, B., James, D. J., Jeltema, T., Johnson, M. W. G., Johnson, M. D., Kent, S., Krause, E., Kron, R., Kuehn, K., Nuropatkin, N., Lahav, O., Lima, M., Lin, H., Maia, M. A. G., March, M., Martini, P., McMahon, R. G., Menanteau, F., Miller, C. J., Miquel, R., Mohr, J. J., Neilsen, E., Nichol, R. C., Ogando, R. L. C., Plazas, A. A., Roe, N., Romer, A. K., Roodman, A., Rykoff, E. S., Sanchez, E., Scarpine, V., Schindler, R., Schubnell, M., Sevilla-Noarbe, I., Smith, M., Smith, R. C., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., Thomas, R. C., Troxel, M. A., Vikram, V., Walker, A. R., Wechsler, R. H., Weller, J., Yanny, B., & Zuntz, J. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. II. UV, Optical, and Near-infrared Light Curves and Comparison to Kilonova Models. United States. doi:10.3847/2041-8213/aa8fc7.
Cowperthwaite, P. S., Berger, E., Villar, V. A., Metzger, B. D., Nicholl, M., Chornock, R., Blanchard, P. K., Fong, W., Margutti, R., Soares-Santos, M., Alexander, K. D., Allam, S., Annis, J., Brout, D., Brown, D. A., Butler, R. E., Chen, H. -Y., Diehl, H. T., Doctor, Z., Drout, M. R., Eftekhari, T., Farr, B., Finley, D. A., Foley, R. J., Frieman, J. A., Fryer, C. L., García-Bellido, J., Gill, M. S. S., Guillochon, J., Herner, K., Holz, D. E., Kasen, D., Kessler, R., Marriner, J., Matheson, T., Neilsen, E. H., Quataert, E., Palmese, A., Rest, A., Sako, M., Scolnic, D. M., Smith, N., Tucker, D. L., Williams, P. K. G., Balbinot, E., Carlin, J. L., Cook, E. R., Durret, F., Li, T. S., Lopes, P. A. A., Lourenço, A. C. C., Marshall, J. L., Medina, G. E., Muir, J., Muñoz, R. R., Sauseda, M., Schlegel, D. J., Secco, L. F., Vivas, A. K., Wester, W., Zenteno, A., Zhang, Y., Abbott, T. M. C., Banerji, M., Bechtol, K., Benoit-Lévy, A., Bertin, E., Buckley-Geer, E., Burke, D. L., Capozzi, D., Carnero Rosell, A., Carrasco Kind, M., Castander, F. J., Crocce, M., Cunha, C. E., D’Andrea, C. B., Costa, L. N. da, Davis, C., DePoy, D. L., Desai, S., Dietrich, J. P., Drlica-Wagner, A., Eifler, T. F., Evrard, A. E., Fernandez, E., Flaugher, B., Fosalba, P., Gaztanaga, E., Gerdes, D. W., Giannantonio, T., Goldstein, D. A., Gruen, D., Gruendl, R. A., Gutierrez, G., Honscheid, K., Jain, B., James, D. J., Jeltema, T., Johnson, M. W. G., Johnson, M. D., Kent, S., Krause, E., Kron, R., Kuehn, K., Nuropatkin, N., Lahav, O., Lima, M., Lin, H., Maia, M. A. G., March, M., Martini, P., McMahon, R. G., Menanteau, F., Miller, C. J., Miquel, R., Mohr, J. J., Neilsen, E., Nichol, R. C., Ogando, R. L. C., Plazas, A. A., Roe, N., Romer, A. K., Roodman, A., Rykoff, E. S., Sanchez, E., Scarpine, V., Schindler, R., Schubnell, M., Sevilla-Noarbe, I., Smith, M., Smith, R. C., Sobreira, F., Suchyta, E., Swanson, M. E. C., Tarle, G., Thomas, D., Thomas, R. C., Troxel, M. A., Vikram, V., Walker, A. R., Wechsler, R. H., Weller, J., Yanny, B., and Zuntz, J. 2017. "The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. II. UV, Optical, and Near-infrared Light Curves and Comparison to Kilonova Models". United States. doi:10.3847/2041-8213/aa8fc7. https://www.osti.gov/servlets/purl/1407127.
@article{osti_1407127,
title = {The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. II. UV, Optical, and Near-infrared Light Curves and Comparison to Kilonova Models},
author = {Cowperthwaite, P. S. and Berger, E. and Villar, V. A. and Metzger, B. D. and Nicholl, M. and Chornock, R. and Blanchard, P. K. and Fong, W. and Margutti, R. and Soares-Santos, M. and Alexander, K. D. and Allam, S. and Annis, J. and Brout, D. and Brown, D. A. and Butler, R. E. and Chen, H. -Y. and Diehl, H. T. and Doctor, Z. and Drout, M. R. and Eftekhari, T. and Farr, B. and Finley, D. A. and Foley, R. J. and Frieman, J. A. and Fryer, C. L. and García-Bellido, J. and Gill, M. S. S. and Guillochon, J. and Herner, K. and Holz, D. E. and Kasen, D. and Kessler, R. and Marriner, J. and Matheson, T. and Neilsen, E. H. and Quataert, E. and Palmese, A. and Rest, A. and Sako, M. and Scolnic, D. M. and Smith, N. and Tucker, D. L. and Williams, P. K. G. and Balbinot, E. and Carlin, J. L. and Cook, E. R. and Durret, F. and Li, T. S. and Lopes, P. A. A. and Lourenço, A. C. C. and Marshall, J. L. and Medina, G. E. and Muir, J. and Muñoz, R. R. and Sauseda, M. and Schlegel, D. J. and Secco, L. F. and Vivas, A. K. and Wester, W. and Zenteno, A. and Zhang, Y. and Abbott, T. M. C. and Banerji, M. and Bechtol, K. and Benoit-Lévy, A. and Bertin, E. and Buckley-Geer, E. and Burke, D. L. and Capozzi, D. and Carnero Rosell, A. and Carrasco Kind, M. and Castander, F. J. and Crocce, M. and Cunha, C. E. and D’Andrea, C. B. and Costa, L. N. da and Davis, C. and DePoy, D. L. and Desai, S. and Dietrich, J. P. and Drlica-Wagner, A. and Eifler, T. F. and Evrard, A. E. and Fernandez, E. and Flaugher, B. and Fosalba, P. and Gaztanaga, E. and Gerdes, D. W. and Giannantonio, T. and Goldstein, D. A. and Gruen, D. and Gruendl, R. A. and Gutierrez, G. and Honscheid, K. and Jain, B. and James, D. J. and Jeltema, T. and Johnson, M. W. G. and Johnson, M. D. and Kent, S. and Krause, E. and Kron, R. and Kuehn, K. and Nuropatkin, N. and Lahav, O. and Lima, M. and Lin, H. and Maia, M. A. G. and March, M. and Martini, P. and McMahon, R. G. and Menanteau, F. and Miller, C. J. and Miquel, R. and Mohr, J. J. and Neilsen, E. and Nichol, R. C. and Ogando, R. L. C. and Plazas, A. A. and Roe, N. and Romer, A. K. and Roodman, A. and Rykoff, E. S. and Sanchez, E. and Scarpine, V. and Schindler, R. and Schubnell, M. and Sevilla-Noarbe, I. and Smith, M. and Smith, R. C. and Sobreira, F. and Suchyta, E. and Swanson, M. E. C. and Tarle, G. and Thomas, D. and Thomas, R. C. and Troxel, M. A. and Vikram, V. and Walker, A. R. and Wechsler, R. H. and Weller, J. and Yanny, B. and Zuntz, J.},
abstractNote = {},
doi = {10.3847/2041-8213/aa8fc7},
journal = {The Astrophysical Journal. Letters},
number = 2,
volume = 848,
place = {United States},
year = 2017,
month =
}
  • We present UV, optical, and NIR photometry of the first electromagnetic counterpart to a gravitational wave source from Advanced LIGO/Virgo, the binary neutron star merger GW170817. Our data set extends from the discovery of the optical counterpart atmore » $0.47$ days to $18.5$$ days post-merger, and includes observations with the Dark Energy Camera (DECam), Gemini-South/FLAMINGOS-2 (GS/F2), and the {\it Hubble Space Telescope} ({\it HST}). The spectral energy distribution (SED) inferred from this photometry at $$0.6$ days is well described by a blackbody model with $$T\approx 8300$$ K, a radius of $$R\approx 4.5\times 10^{14}$$ cm (corresponding to an expansion velocity of $$v\approx 0.3c$$), and a bolometric luminosity of $$L_{\rm bol}\approx 5\times10^{41}$$ erg s$$^{-1}$$. At $1.5$ days we find a multi-component SED across the optical and NIR, and subsequently we observe rapid fading in the UV and blue optical bands and significant reddening of the optical/NIR colors. Modeling the entire data set we find that models with heating from radioactive decay of $$^{56}$$Ni, or those with only a single component of opacity from $r$-process elements, fail to capture the rapid optical decline and red optical/NIR colors. Instead, models with two components consistent with lanthanide-poor and lanthanide-rich ejecta provide a good fit to the data, the resulting "blue" component has $$M_\mathrm{ej}^\mathrm{blue}\approx 0.01$$ M$$_\odot$$ and $$v_\mathrm{ej}^\mathrm{blue}\approx 0.3$$c, and the "red" component has $$M_\mathrm{ej}^\mathrm{red}\approx 0.04$$ M$$_\odot$$ and $$v_\mathrm{ej}^\mathrm{red}\approx 0.1$$c. These ejecta masses are broadly consistent with the estimated $r$-process production rate required to explain the Milky Way $r$-process abundances, providing the first evidence that BNS mergers can be a dominant site of $r$-process enrichment.« less
  • We present optical and ultraviolet spectra of the first electromagnetic counterpart to a gravitational wave (GW) source, the binary neutron star merger GW170817. Spectra were obtained nightly between 1.5 and 9.5 days post-merger, using the SOAR and Magellan telescopes; the UV spectrum was obtained with the \textit{Hubble Space Telescope} at 5.5 days. Our data reveal a rapidly-fading blue component (more » $$T\approx5500$$ K at 1.5 days) that quickly reddens; spectra later than $$\gtrsim 4.5$$ days peak beyond the optical regime. The spectra are mostly featureless, although we identify a possible weak emission line at $$\sim 7900$$ \AA\ at $$t\lesssim 4.5$$ days. The colours, rapid evolution and featureless spectrum are consistent with a "blue" kilonova from polar ejecta comprised mainly of light $r$-process nuclei with atomic mass number $$A\lesssim 140$$. This indicates a sight-line within $$\theta_{\rm obs}\lesssim 45^{\circ}$$ of the orbital axis. Comparison to models suggests $$\sim0.03$$ M$$_\odot$$ of blue ejecta, with a velocity of $$\sim 0.3c$$. The required lanthanide fraction is $$\sim 10^{-4}$$, but this drops to $$<10^{-5}$$ in the outermost ejecta. The large velocities point to a dynamical origin, rather than a disk wind, for this blue component, suggesting that both binary constituents are neutron stars (as opposed to a binary consisting of a neutron star and a black hole). For dynamical ejecta, the high mass favors a small neutron star radius of $$\lesssim 12$$ km. This mass also supports the idea that neutron star mergers are a major contributor to $r$-process nucleosynthesis.« less
  • We present Very Large Array (VLA) and Atacama Large Millimeter/sub-millimeter Array ALMA radio observations of GW\,170817, the first Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo gravitational wave (GW) event from a binary neutron star merger and the first GW event with an electromagnetic (EM) counterpart. Our data include the first observations following the discovery of the optical transient at both the centimeter (more » $13.7$ hours post merger) and millimeter ($2.41$ days post merger) bands. We detect faint emission at 6 GHz at 19.47 and 39.23 days after the merger, but not in an earlier observation at 2.46 d. We do not detect cm/mm emission at the position of the optical counterpart at frequencies of 10-97.5 GHz at times ranging from 0.6 to 30 days post merger, ruling out an on-axis short gamma-ray burst (SGRB) for energies $$\gtrsim 10^{48}$$ erg. For fiducial SGRB parameters, our limits require an observer viewer angle of $$\gtrsim 20^{\circ}$$. The radio and X-ray data can be jointly explained as the afterglow emission from an SGRB with a jet energy of $$\sim 10^{49}-10^{50}$$ erg that exploded in a uniform density environment with $$n\sim 10^{-4}-10^{-2}$$ cm$$^{-3}$$, viewed at an angle of $$\sim 20^{\circ}-40^{\circ}$$ from the jet axis. Using the results of our light curve and spectral modeling, in conjunction with the inference of the circumbinary density, we predict the emergence of late-time radio emission from the deceleration of the kilonova (KN) ejecta on a timescale of $$\sim 5-10$$ years that will remain detectable for decades with next-generation radio facilities, making GW\,170817 a compelling target for long-term radio monitoring.« less
  • We present a near-infrared spectral sequence of the electromagnetic counterpart to the binary neutron star merger GW170817 detected by Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo. Our data set comprises seven epochs of J + H spectra taken with FLAMINGOS-2 on Gemini-South between 1.5 and 10.5 days after the merger. In the initial epoch, the spectrum is dominated by a smooth blue continuum due to a high-velocity, lanthanide-poor blue kilonova component. Starting the following night, all of the subsequent spectra instead show features that are similar to those predicted in model spectra of material with a high concentration of lanthanides, includingmore » spectral peaks near 1.07 and 1.55 μ m. Our fiducial model with 0.04 M {sub ⊙} of ejecta, an ejection velocity of v = 0.1 c , and a lanthanide concentration of X {sub lan} = 10{sup −2} provides a good match to the spectra taken in the first five days, although it over-predicts the late-time fluxes. We also explore models with multiple fitting components, in each case finding that a significant abundance of lanthanide elements is necessary to match the broad spectral peaks that we observe starting at 2.5 days after the merger. These data provide direct evidence that binary neutron star mergers are significant production sites of even the heaviest r -process elements.« less
  • Here, we present a near-infrared spectral sequence of the electromagnetic counterpart to the binary neutron star merger GW170817 detected by Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo. Our data set comprises seven epochs of J+H spectra taken with FLAMINGOS-2 on Gemini-South between 1.5 and 10.5 days after the merger. In the initial epoch, the spectrum is dominated by a smooth blue continuum due to a high-velocity, lanthanide-poor blue kilonova component. Starting the following night, all of the subsequent spectra instead show features that are similar to those predicted in model spectra of material with a high concentration of lanthanides, including spectralmore » peaks near 1.07 and 1.55 μm. Our fiducial model with 0.04 M ⊙ of ejecta, an ejection velocity of v = 0.1c, and a lanthanide concentration of X lan = 10 –2 provides a good match to the spectra taken in the first five days, although it over-predicts the late-time fluxes. We also explore models with multiple fitting components, in each case finding that a significant abundance of lanthanide elements is necessary to match the broad spectral peaks that we observe starting at 2.5 days after the merger. These data provide direct evidence that binary neutron star mergers are significant production sites of even the heaviest r-process elements.« less
    Cited by 8