skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Predicting Strain in Cure Shrinkage Induced Epoxy/Metal Bilayer Beam Bending.

Abstract

Abstract not provided.

Authors:
;
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1406853
Report Number(s):
SAND2016-10712C
648550
DOE Contract Number:
AC04-94AL85000
Resource Type:
Conference
Resource Relation:
Conference: Proposed for presentation at the Intern Technical Exchange Information.
Country of Publication:
United States
Language:
English

Citation Formats

Huddleston, Bradley, and Long, Kevin Nicholas. Predicting Strain in Cure Shrinkage Induced Epoxy/Metal Bilayer Beam Bending.. United States: N. p., 2016. Web.
Huddleston, Bradley, & Long, Kevin Nicholas. Predicting Strain in Cure Shrinkage Induced Epoxy/Metal Bilayer Beam Bending.. United States.
Huddleston, Bradley, and Long, Kevin Nicholas. 2016. "Predicting Strain in Cure Shrinkage Induced Epoxy/Metal Bilayer Beam Bending.". United States. doi:. https://www.osti.gov/servlets/purl/1406853.
@article{osti_1406853,
title = {Predicting Strain in Cure Shrinkage Induced Epoxy/Metal Bilayer Beam Bending.},
author = {Huddleston, Bradley and Long, Kevin Nicholas},
abstractNote = {Abstract not provided.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2016,
month =
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • Abstract not provided.
  • Abstract not provided.
  • Cross-sections of resin strands. Techniques were developed to make in situ measurements of gelled resin to determine linear shrinkage, stress-strain response and stress relaxation of single strands of SL 5170 epoxy and SL 5149 photocurable resins. Epoxy strands shrank approximately 1.4% and the acrylate strands about 1.0% after a single exposure. No forces were measured during cure shrinkage of strands following the first laser exposure. In multiple laser exposures, the acrylate continues to shrink; whereas (University of Dayton data) no additional shrinkage is observed in epoxy strands on a second hit. In force relaxation tests, a strand is drawn andmore » then a 0.5% step strain is applied after different elapsed times. The epoxy initial modulus evolves (increases) with elapsed time following draw of the strand, and this evolution in modulus occurs after linear shrinkage has stopped. On the other hand, acrylates show no evolution of modulus with elapsed time following a single laser draw; i.e., once shrinkage stops after one laser hit, the initial modulus remains stable with elapsed time. Finally, relaxation response times of epoxy strands get larger with increasing elapsed time after laser draw. In acrylate strands there was no evolution in initial modulus with elapsed time after a single draw so relaxation times are not a function of elapsed time after a single hit with the laser.« less
  • A relatively new advanced composite matrix, polycyanate ester, was evaluated for cure shrinkage. The chemical cure shrinkage of composites is difficult to model but a number of clever experimental techniques are available to the investigator. In this work the method of curing a prepreg layup on top of a previously cured laminate of identical ply composition is utilized. The polymeric matrices used in advanced composites have been primarily epoxies and therefore a common system of this type, Fiberite 3501-6, was used as a base case material. Three polycyanate matrix systems were selected for the study. These are: Fiberite 954-2A, YLAmore » RS-3, and Bryte Technology BTCy-1. The first three of these systems were unidirectional prepreg with carbon fiber reinforcement. The Bryte Technology material was reinforced with E-glass fabric. The technique used to evaluate cure shrinkage results in distortion of the flatness of an otherwise symmetric laminate. The first laminate is cured in a conventional fashion. An identical layup is cured on this first laminate. During the second cure all constituents are exposed to the same thermal cycles. However, only the new portion of the laminate will experience volumetric changes associate with matrix cure. The additional strain of cure shrinkage results in an unsymmetric distribution of residual stresses and an associated warpage of the laminate. The baseline material, Fiberite 3501-6, exhibited cure shrinkage that was in accordance with expectations. Cure strains were {minus}4.5E-04. The YLA RS-3 material had cure strains somewhat lower at {minus}3.2E-04. The Fiberite 954-2A cure strain was {minus}1.5E-04 that is 70% lower than the baseline material. The glass fabric material with the Bryte BTCy-1 matrix did not result in meaningful results because the processing methods were not fully compatible with the material.« less
  • No abstract prepared.