skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Selective cerebral perfusion prevents abnormalities in glutamate cycling and neuronal apoptosis in a model of infant deep hypothermic circulatory arrest and reperfusion

Abstract

Rationale: Deep hypothermic circulatory arrest (DHCA) is often required for the repair of complex congenital cardiac defects in infants. However, DHCA induces neuroapoptosis associated with later development of neurocognitive abnormalities. Selective cerebral perfusion (SCP) theoretically provides superior neural protection possibly through modifications in cerebral substrate oxidation and closely integrated glutamate cycling. Objectives: We tested the hypothesis that SCP modulates glucose entry into the citric acid cycle, and ameliorates abnormalities in glutamate flux which occur in association neuroapoptosis during DHCA. Methods and Results: Eighteen male Yorkshire piglets (age 34-44 days) were assigned randomly to 2 groups of 7 (DHCA or DHCA with SCP for 60 minutes at 18 °C) and 4 control pigs without cardiopulmonary bypass support. After the completion of rewarming from DHCA, 13-Carbon-labeled (13C) glucose as a metabolic tracer was infused. We used gas chromatography-mass spectrometry (GCMS) and nuclear magnetic resonance for metabolic analysis in the frontal cortex. Following 2.5 hours of cerebral reperfusion, we observed similar cerebral ATP levels, absolute levels of lactate and citric acid cycle intermediates, and 13C-enrichment. However, DHCA induced significant abnormalities in glutamate cycling resulting in reduced glutamate/glutamine and elevated γ-aminobutyric acid (GABA)/glutamate along with neuroapoptosis (TUNEL), which were all prevented by SCP. Conclusions:more » DHCA alone induces abnormalities in cycling of the major neurotransmitters in association with neuroapoptosis, but does not alter cerebral glucose utilization during reperfusion. The data suggest that SCP prevents these modifications in glutamate/glutamine/GABA cycling and protects the cerebral cortex from neuroapoptosis.« less

Authors:
; ; ; ; ; ;
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (US), Environmental Molecular Sciences Laboratory (EMSL)
Sponsoring Org.:
USDOE
OSTI Identifier:
1406812
Report Number(s):
PNNL-SA-118083
Journal ID: ISSN 0271-678X; 49065; 48606; KP1704020
DOE Contract Number:
AC05-76RL01830
Resource Type:
Journal Article
Resource Relation:
Journal Name: Journal of Cerebral Blood Flow and Metabolism; Journal Volume: 36; Journal Issue: 11
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 59 BASIC BIOLOGICAL SCIENCES; Environmental Molecular Sciences Laboratory

Citation Formats

Kajimoto, Masaki, Ledee, Dolena R., Olson, Aaron K., Isern, Nancy G., Robillard-Frayne, Isabelle, Des Rosiers, Christine, and Portman, Michael A. Selective cerebral perfusion prevents abnormalities in glutamate cycling and neuronal apoptosis in a model of infant deep hypothermic circulatory arrest and reperfusion. United States: N. p., 2016. Web. doi:10.1177/0271678X16666846.
Kajimoto, Masaki, Ledee, Dolena R., Olson, Aaron K., Isern, Nancy G., Robillard-Frayne, Isabelle, Des Rosiers, Christine, & Portman, Michael A. Selective cerebral perfusion prevents abnormalities in glutamate cycling and neuronal apoptosis in a model of infant deep hypothermic circulatory arrest and reperfusion. United States. doi:10.1177/0271678X16666846.
Kajimoto, Masaki, Ledee, Dolena R., Olson, Aaron K., Isern, Nancy G., Robillard-Frayne, Isabelle, Des Rosiers, Christine, and Portman, Michael A. 2016. "Selective cerebral perfusion prevents abnormalities in glutamate cycling and neuronal apoptosis in a model of infant deep hypothermic circulatory arrest and reperfusion". United States. doi:10.1177/0271678X16666846.
@article{osti_1406812,
title = {Selective cerebral perfusion prevents abnormalities in glutamate cycling and neuronal apoptosis in a model of infant deep hypothermic circulatory arrest and reperfusion},
author = {Kajimoto, Masaki and Ledee, Dolena R. and Olson, Aaron K. and Isern, Nancy G. and Robillard-Frayne, Isabelle and Des Rosiers, Christine and Portman, Michael A.},
abstractNote = {Rationale: Deep hypothermic circulatory arrest (DHCA) is often required for the repair of complex congenital cardiac defects in infants. However, DHCA induces neuroapoptosis associated with later development of neurocognitive abnormalities. Selective cerebral perfusion (SCP) theoretically provides superior neural protection possibly through modifications in cerebral substrate oxidation and closely integrated glutamate cycling. Objectives: We tested the hypothesis that SCP modulates glucose entry into the citric acid cycle, and ameliorates abnormalities in glutamate flux which occur in association neuroapoptosis during DHCA. Methods and Results: Eighteen male Yorkshire piglets (age 34-44 days) were assigned randomly to 2 groups of 7 (DHCA or DHCA with SCP for 60 minutes at 18 °C) and 4 control pigs without cardiopulmonary bypass support. After the completion of rewarming from DHCA, 13-Carbon-labeled (13C) glucose as a metabolic tracer was infused. We used gas chromatography-mass spectrometry (GCMS) and nuclear magnetic resonance for metabolic analysis in the frontal cortex. Following 2.5 hours of cerebral reperfusion, we observed similar cerebral ATP levels, absolute levels of lactate and citric acid cycle intermediates, and 13C-enrichment. However, DHCA induced significant abnormalities in glutamate cycling resulting in reduced glutamate/glutamine and elevated γ-aminobutyric acid (GABA)/glutamate along with neuroapoptosis (TUNEL), which were all prevented by SCP. Conclusions: DHCA alone induces abnormalities in cycling of the major neurotransmitters in association with neuroapoptosis, but does not alter cerebral glucose utilization during reperfusion. The data suggest that SCP prevents these modifications in glutamate/glutamine/GABA cycling and protects the cerebral cortex from neuroapoptosis.},
doi = {10.1177/0271678X16666846},
journal = {Journal of Cerebral Blood Flow and Metabolism},
number = 11,
volume = 36,
place = {United States},
year = 2016,
month =
}
  • Recent studies indicate that reversible 201Tl perfusion defects, compatible with silent myocardial ischemia, commonly develop during exercise in asymptomatic or mildly symptomatic patients with hypertrophic cardiomyopathy (HCM). To determine whether this represents a dynamic process that may be modified favorably by medical therapy, we studied 29 asymptomatic or minimally symptomatic patients with HCM, aged 12-55 years (mean, 28), with exercise 201Tl emission computed tomography under control conditions and again after 1 week of oral verapamil (mean dosage, 453 mg/day). Treadmill time increased slightly during verapamil (21.0 +/- 3.6 to 21.9 +/- 2.7 minutes, p less than 0.005), but peak heartmore » rate-blood pressure product was unchanged (26.3 +/- 6.0 X 10(3)) compared with 25.0 +/- 6.4 X 10(3). Two midventricular short-axis images per study were divided into five regions each, and each of these 10 regions was then analyzed on a 0-2 scale by three observers blinded with regard to the patients' therapy. Average regional scores of 1.5 or less were considered to represent perfusion defects, and a change in regional score of 0.5 or more was considered to constitute a significant change. During control studies, 15 patients (52%) developed perfusion defects with exercise (average, 3.7 regions per patient). In 14 of these patients, all perfusion defects completely reversed after 3 hours of rest; one patient had fixed defects. After administration of verapamil, exercise perfusion scores improved in 10 of the 14 patients (71%) with reversible defects; there was overall improvement in 34 of 50 (68%) regions with initially reversible perfusion defects.« less
  • Single photon emission computed tomography (SPECT) perfusion brain scans with iodine-123 isopropyl iodoamphetamine (IMP) were obtained in 12 subjects who acknowledged using cocaine on a sporadic to a daily basis. The route of cocaine administration varied from nasal to intravenous. Concurrent abuse of other drugs was also reported. None of the patients were positive for human immunodeficiency virus. Brain scans demonstrated focal defects in 11 subjects, including seven who were asymptomatic, and no abnormality in one. Among the findings were scattered focal cortical deficits, which were seen in several patients and which ranged in severity from small and few tomore » multiple and large, with a special predilection for the frontal and temporal lobes. No perfusion deficits were seen on I-123 SPECT images in five healthy volunteers. Focal alterations in cerebral perfusion are seen commonly in asymptomatic drug users, and these focal deficits are readily depicted by I-123 IMP SPECT.« less
  • We utilized a translational model of infant CPB to test the hypothesis that T3 modulates pyruvate entry into the citric acid cycle (CAC) thereby providing the energy support for improved cardiac function after ischemia-reperfusion. Methods and Results: Neonatal piglets received intracoronary [2-13Carbon(13C)]-pyruvate for 40 minutes (8 mM) during control aerobic conditions (Cont) or immediately after reperfusion (IR) from global hypothermic ischemia. A third group (IR-Tr) received T3 (1.2 ug/kg) during reperfusion. We assessed absolute CAC intermediate levels (aCAC) and flux parameters into the CAC through oxidative pyruvate decarboxylation (PDC ) and anaplerotic carboxylation (PC; ) using 13C-labeled pyruvate and isotopomermore » analysis by gas and liquid chromatography-mass spectrometry and 13C NMR. Neither IR nor IR-Tr modified aCAC. However, compared to IR, T3 (group IR-Tr) increased cardiac power and oxygen consumption after CPB while elevating both PDC and PC (~ four-fold). T3 inhibited IR induced reductions in CAC intermediate molar percent enrichment (MPE) and oxaloacetate(citrate)/malate MPE ratio; an index of aspartate entry into the CAC. Conclusions: T3 markedly enhances PC and PDC thereby providing substrate for elevated cardiac function and work after reperfusion. The increases in pyruvate flux occur with preservation of the CAC intermediate pool. Additionally, T3 inhibition of reductions in CAC intermediate MPEs indicates that T3 reduces the reliance on amino acids (AA) for anaplerosis after reperfusion. Thus, AA should be more available for other functions such as protein synthesis.« less
  • Recent investigations demonstrate that cerebral blood flow (CBF) progressively declines during hypothermic, nonpulsatile cardiopulmonary bypass (CPB). If CBF declines because of brain cooling, the cerebral metabolic rate for oxygen (CMRO2) should decline in parallel with the reduction in CBF. Therefore we studied the response of CBF, the cerebral arteriovenous oxygen content difference (A-VDcereO2) and CMRO2 as a function of the duration of CPB in humans. To do this, we compared the cerebrovascular response to changes in the PaCO2. Because sequential CBF measurements using xenon 133 (133Xe) clearance must be separated by 15-25 min, we hypothesized that a time-dependent decline inmore » CBF would accentuate the CBF reduction caused by a decrease in PaCO2, but would blunt the CBF increase associated with a rise in PaCO2. We measured CBF in 25 patients and calculated the cerebral arteriovenous oxygen content difference using radial arterial and jugular venous bulb blood samples. Patients were randomly assigned to management within either a lower (32-48 mm Hg) or higher (50-71 mm Hg) range of PaCO2 uncorrected for temperature. Each patient underwent two randomly ordered sets of measurements, one at a lower PaCO2 and the other at a higher PaCO2 within the respective ranges. Cerebrovascular responsiveness to changes in PaCO2 was calculated as specific reactivity (SR), the change in CBF divided by the change in PaCO2, expressed in mL.100 g-1.min-1.mm Hg-1.« less
  • We examined the relationship of changes in partial pressure of carbon dioxide on cerebral blood flow responsiveness in 20 pediatric patients undergoing hypothermic cardiopulmonary bypass. Cerebral blood flow was measured during steady-state hypothermic cardiopulmonary bypass with the use of xenon 133 clearance methodology at two different arterial carbon dioxide tensions. During these measurements there was no significant change in mean arterial pressure, nasopharyngeal temperature, pump flow rate, or hematocrit value. Cerebral blood flow was found to be significantly greater at higher arterial carbon dioxide tensions (p less than 0.01), so that for every millimeter of mercury rise in arterial carbonmore » dioxide tension there was a 1.2 ml.100 gm-1.min-1 increase in cerebral blood flow. Two factors, deep hypothermia (18 degrees to 22 degrees C) and reduced age (less than 1 year), diminished the effect carbon dioxide had on cerebral blood flow responsiveness but did not eliminate it. We conclude that cerebral blood flow remains responsive to changes in arterial carbon dioxide tension during hypothermic cardiopulmonary bypass in infants and children; that is, increasing arterial carbon dioxide tension will independently increase cerebral blood flow.« less