skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quantifying the impacts of agricultural management and climate change on soil organic carbon changes in the uplands of Eastern China

Abstract

In order to implement optimal farming practices for increasing soil organic carbon (SOC) in agro-ecosystems, there is a need for understanding how management practices and climate change alter SOC levels. This study quantified the influence of agricultural management practices and climatic factors on SOC changes in Eastern China’s upland-crop fields in northern Jiangsu Province for the period of 2010–2039, by using the DeNitrification-DeComposition (DNDC, version 9.5) model. We utilized the currently most detailed soil database, which is at a scale of 1:50,000, containing 17,024 soil polygons derived from 983 upland soil profiles. Across all the examined scenarios of agricultural management practices, our results show that the carbon sequestration potential in the upper layer soil (0–50 cm) of the study area varied from 6.93 to 155.11 Tg C during 2010–2039, with an average rate of 59 to 1317 kg C ha-1 year-1. As a promising alternative, the combined scenario of crop residue return rate of 50% and farmyard manure incorporation rate of 50% is recommended for agricultural management practice in this region. Meanwhile, climate conditions play a significant role in the annual SOC changes as well. Air temperature increase of 2–4 °C leads to 3.41–7.51 Tg C decrease in SOC undermore » conventional management for the entire study region. Decreasing or increasing precipitation by 20% would increase 0.57 Tg C or decrease 1.09 Tg C under the conventional management scenario, respectively. Additionally, among all the soil groups, the fluvo-aquic soils have the highest C sequestration rate in most scenarios. Our findings could be used to inform optimal agricultural management toward climate mitigation.« less

Authors:
; ; ; ; ; ; ; ;
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1406793
Report Number(s):
PNNL-SA-130217
Journal ID: ISSN 0167-1987
DOE Contract Number:
AC05-76RL01830
Resource Type:
Journal Article
Resource Relation:
Journal Name: Soil and Tillage Research; Journal Volume: 174; Journal Issue: C
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; 60 APPLIED LIFE SCIENCES

Citation Formats

Zhang, Liming, Wang, Guangxiang, Zheng, Qiaofeng, Liu, Yaling, Yu, Dongsheng, Shi, Xuezheng, Xing, Shihe, Chen, Hanyue, and Fan, Xieyu. Quantifying the impacts of agricultural management and climate change on soil organic carbon changes in the uplands of Eastern China. United States: N. p., 2017. Web. doi:10.1016/j.still.2017.06.005.
Zhang, Liming, Wang, Guangxiang, Zheng, Qiaofeng, Liu, Yaling, Yu, Dongsheng, Shi, Xuezheng, Xing, Shihe, Chen, Hanyue, & Fan, Xieyu. Quantifying the impacts of agricultural management and climate change on soil organic carbon changes in the uplands of Eastern China. United States. doi:10.1016/j.still.2017.06.005.
Zhang, Liming, Wang, Guangxiang, Zheng, Qiaofeng, Liu, Yaling, Yu, Dongsheng, Shi, Xuezheng, Xing, Shihe, Chen, Hanyue, and Fan, Xieyu. Fri . "Quantifying the impacts of agricultural management and climate change on soil organic carbon changes in the uplands of Eastern China". United States. doi:10.1016/j.still.2017.06.005.
@article{osti_1406793,
title = {Quantifying the impacts of agricultural management and climate change on soil organic carbon changes in the uplands of Eastern China},
author = {Zhang, Liming and Wang, Guangxiang and Zheng, Qiaofeng and Liu, Yaling and Yu, Dongsheng and Shi, Xuezheng and Xing, Shihe and Chen, Hanyue and Fan, Xieyu},
abstractNote = {In order to implement optimal farming practices for increasing soil organic carbon (SOC) in agro-ecosystems, there is a need for understanding how management practices and climate change alter SOC levels. This study quantified the influence of agricultural management practices and climatic factors on SOC changes in Eastern China’s upland-crop fields in northern Jiangsu Province for the period of 2010–2039, by using the DeNitrification-DeComposition (DNDC, version 9.5) model. We utilized the currently most detailed soil database, which is at a scale of 1:50,000, containing 17,024 soil polygons derived from 983 upland soil profiles. Across all the examined scenarios of agricultural management practices, our results show that the carbon sequestration potential in the upper layer soil (0–50 cm) of the study area varied from 6.93 to 155.11 Tg C during 2010–2039, with an average rate of 59 to 1317 kg C ha-1 year-1. As a promising alternative, the combined scenario of crop residue return rate of 50% and farmyard manure incorporation rate of 50% is recommended for agricultural management practice in this region. Meanwhile, climate conditions play a significant role in the annual SOC changes as well. Air temperature increase of 2–4 °C leads to 3.41–7.51 Tg C decrease in SOC under conventional management for the entire study region. Decreasing or increasing precipitation by 20% would increase 0.57 Tg C or decrease 1.09 Tg C under the conventional management scenario, respectively. Additionally, among all the soil groups, the fluvo-aquic soils have the highest C sequestration rate in most scenarios. Our findings could be used to inform optimal agricultural management toward climate mitigation.},
doi = {10.1016/j.still.2017.06.005},
journal = {Soil and Tillage Research},
number = C,
volume = 174,
place = {United States},
year = {Fri Dec 01 00:00:00 EST 2017},
month = {Fri Dec 01 00:00:00 EST 2017}
}
  • Understanding the impacts of climate change and agricultural management practices on soil organic carbon (SOC) dynamics is critical for implementing optimal farming practices and maintaining agricultural productivity. This study examines the influence of climate and agricultural management on carbon sequestration potentials in Tai-Lake Paddy soils of China using the DeNitrification-DeComposition (DNDC) model, with a high-resolution soil database (1:50,000). Model simulations considered the effects of no tillage, increasing manure application, increasing/decreasing of N-fertilizer application and crop residues, water management, and climatic shifts in temperature and precipitation. We found that the carbon sequestration potential for the 2.32 Mha paddy soils of themore » Tai-Lake region varied from 4.71 to 44.31 Tg C during the period 2001-2019, with an annual average SOC changes ranged from 107 to 1005 kg C ha -1 yr -1. The sequestration potential significantly increased with increasing application of N-fertilizer, manure, conservation tillage, and crop residues. To increase soil C sequestration in this region, no-tillage and increasing of crop residue return to soils and manure application are recommended. Our analysis of climate impacts on SOC sequestration suggests that the rice paddies in this region will continue to be a carbon sink under future warming conditions. In addition, because the region’s annual precipitation (>1200 mm) is high, we also recommend reducing irrigation water use for these rice paddies to conserve freshwater in the Tai-Lake region.« less
  • Increasing atmospheric greenhouse gas concentrations are expected to induce significant climate change over the next century and beyond, but the impacts on society remain highly uncertain. This work examines potential climate change impacts on the productivity of five major crops in northeastern China: canola, corn, potato, rice, and winter wheat. In addition to determining domain-wide trends, the objective is to identify vulnerable and emergent regions under future climate conditions, defined as having a greater than 10% decrease and increase in productivity, respectively. Data from the ICTP RegCM3 regional climate model for baseline (1961-1990) and future (2071-2100) periods under A2 scenariomore » conditions are used as input in the EPIC agro-ecosystem simulation model in the domain [30ºN, 108ºE] to [42ºN, 123ºE]. Simulations are performed with and without the enhanced CO2 fertilization effect. Results indicate that aggregate potential productivity (i.e. if the crop is grown everywhere) increases 6.5% for rice, 8.3% for canola, 18.6% for corn, 22.9% for potato, and 24.9% for winter wheat, although with significant spatial variability for each crop. However, absent the enhanced CO2 fertilization effect, potential productivity declines in all cases ranging from 2.5-12%. Interannual yield variability remains constant or declines in all cases except rice. Climate variables are found to be more significant drivers of simulated yield changes than changes in soil properties, except in the case of potato production in the northwest where the effects of wind erosion are more significant. Overall, in the future period corn and winter wheat benefit significantly in the North China Plain, rice remains dominant in the southeast and emerges in the northeast, potato and corn yields become viable in the northwest, and potato yields suffer in the southwest with no other crop emerging as a clear beneficiary from among those simulated in this study.« less
  • The Huang-Hai Plain in northeast China has been cultivated for thousands of years and is the most productive wheat growing region in the country. Its agricultural future will be determined in large part by how global climatic changes affect regional conditions and by the actions China takes to mitigate or adapt to climate change impacts. One potential mitigation strategy is to promote soil carbon (C) sequestration, which would improve soil quality while simultaneously contributing to the mitigation of climate change. The IPCC estimates that 40 Pg of C could be sequestered in cropland soils worldwide over the next century. Heremore » we assess the potential for soil C sequestration with conversion of a conventional till (CT) continuous wheat system to a wheat-corn double cropping system and by implementing no till (NT) management for both continuous wheat and wheat-corn systems. To assess the influence of these management changes under a changing climate, we use two climate change scenarios at two time periods in the EPIC agro-ecosystem simulation model. The applied climate change scenarios are from the HadCM3 Global Climate Model for the time periods 2015-2045 and 2070-2099. The HadCM3 model projects that both temperature and precipitation will increase throughout the next century with increases of greater than 5 °C and up to 300 mm possible by 2099. An increase in the variability of temperature is also projected and is, accordingly, applied in the simulations. The EPIC model indicates that winter wheat yields would increase on average by 0.2 Mg ha-1 in the 2030 period and by 0.8 Mg ha-1 in the 2085 period due largely to the warmer nighttime temperatures and higher precipitation projected by the HadCM3 model. Simulated yields were not significantly affected by imposed changes in crop management. Simulated soil organic C content was higher under both NT management and double cropping than under CT continuous wheat. Soil C sequestration rates for continuous wheat systems were increased by 0.5 Mg ha-1 yr-1 by NT in the 2030 period and by 0.4 Mg ha-1 yr-1 in the 2085 period. With wheat-corn double cropping, NT increased sequestration rates by 1.3 and 1.0 Mg ha-1 yr-1 in 2030 and 2085, respectively. The total C offset due to a shift to NT management over 16 million hectares of agricultural land on the Huang-Hai Plain is 240 to 180 Tg C for continuous wheat management in 2030 and 2085, respectively and 675 to 495 Tg C for wheat-corn double cropping in 2030 and 2085, respectively.« less
  • Agricultural management affects soil and soil organic carbon (SOC) erosion. The effect was assessed for a watershed (o.79 ha, 10% slope steepness, 132 m slope length) at the North Appalachian Experimental Watershed research station near Coshocton, Ohio, from 1951 to 1998
  • This paper describes methodology and results of a study by researchers at PNNL contributing to the water sector study of the U.S. National Assessment of Climate Change. The vulnerability of water resources in the conterminous U.S. to climate change in 10-y periods centered on 2030 and 2095--as projected by the HadCM2 general circulation model--was modeled with HUMUS (Hydrologic Unit Model of the U.S.). HUMUS consists of a GIS that provides data on soils, land use and climate to drive the hydrology model Soil Water Assessment Tool (SWAT). The modeling was done at the scale of the 2101 8-digit USGS hydrologicmore » unit areas (HUA). Results are aggregated to the 4-digit and 2-digit (Major Water Resource Region, MWRR) scales for various purposes. Daily records of temperature and precipitation for 1961-1990 provided the baseline climate. Water yields (WY)--sum of surface and subsurface runoff--increases from the baseline period over most of the U.S. in 2030 and 2095. In 2030, WY increases in the western US and decreases in the central and southeast regions. Notably, WY increases by 139 mm from baseline in the Pacific NW. Decreased WY is projected for the Lower Mississippi and Texas Gulf basins, driven by higher temperatures and reduced precipitation. The HadCM2 2095 scenario projects a climate significantly wetter than baseline, resulting in WY increases of 38%. WY increases are projected throughout the eastern U.S. WY also increases in the western U.S. Climate change also affects the seasonality of the hydrologic cycle. Early snowmelt is induced in western basins, leading to dramatically increased WYs in late winter and early spring. The simulations were run at current (365 ppm) and elevated (560 ppm) atmospheric CO2 concentrations to account for the potential impacts of the CO2-fertilization effect. The effects of climate change scenario were considerably greater than those due to elevated CO2 but the latter, overall, decreased losses and augmented increases in water yield.« less