skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Biomass burning aerosol transport and vertical distribution over the South African-Atlantic region: Aerosol Transport Over SE Atlantic

Abstract

Aerosols from wild-land fires could significantly perturb the global radiation balance and induce the climate change. In this study, the Community Atmospheric Model version 5 (CAM5) with prescribed daily fire aerosol emissions is used to investigate the spatial and seasonal characteristics of radiative forcings of wildfire aerosols including black carbon (BC) and particulate organic matter (POM). The global annual mean direct radiative forcing (DRF) of all fire aerosols is 0.15 W m-2, mainly due to the absorption of fire BC (0.25 W m-2), while fire POM induces a weak negative forcing (-0.05 W m-2). Strong positive DRF is found in the Arctic and in the oceanic regions west of South Africa and South America as a result of amplified absorption of fire BC above low-level clouds, in general agreement with satellite observations. The global annual mean cloud radiative forcing due to all fire aerosols is -0.70 W m-2, resulting mainly from the fire POM indirect forcing (-0.59 W m-2). The large cloud liquid water path over land areas of the Arctic favors the strong fire aerosol indirect forcing (up to -15 W m-2) during the Arctic summer. Significant surface cooling, precipitation reduction and low-level cloud amount increase are also foundmore » in the Arctic summer as a result of the fire aerosol indirect effect. The global annual mean surface albedo forcing over land areas (0.03 W m-2) is mainly due to the fire BC-on-snow forcing (0.02 W m-2) with the maximum albedo forcing occurring in spring (0.12 W m-2) when snow starts to melt.« less

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [5]; ORCiD logo [6]; ORCiD logo [7]; ORCiD logo [7]; ORCiD logo [8]
  1. Department of Earth, Atmospheric and Planetary Sciences, Purdue University, West Lafayette Indiana USA
  2. Joint Center for Earth Systems Technology, UMBC, Baltimore Maryland USA; NASA Goddard Space Flight Center, Greenbelt Maryland USA
  3. NASA Goddard Space Flight Center, Greenbelt Maryland USA
  4. Department of Physical and Chemical Sciences, University of L'Aquila, L'Aquila Italy; Center of Excellence in Telesensing of Environment and Model Prediction of Severe events, University of L'Aquila, L'Aquila Italy
  5. Department of Physics, University of Athens, Athens Greece
  6. Finnish Meteorological Institute, Kuopio Finland
  7. Pacific Northwest National Laboratory, Richland Washington USA
  8. Department of Atmospheric Science, University of Wyoming, Laramie Wyoming USA
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1406681
Report Number(s):
PNNL-SA-123121
Journal ID: ISSN 2169-897X; KP1703020
DOE Contract Number:  
AC05-76RL01830
Resource Type:
Journal Article
Journal Name:
Journal of Geophysical Research: Atmospheres
Additional Journal Information:
Journal Volume: 122; Journal Issue: 12; Journal ID: ISSN 2169-897X
Publisher:
American Geophysical Union
Country of Publication:
United States
Language:
English

Citation Formats

Das, Sampa, Harshvardhan, H., Bian, Huisheng, Chin, Mian, Curci, Gabriele, Protonotariou, Anna P., Mielonen, Tero, Zhang, Kai, Wang, Hailong, and Liu, Xiaohong. Biomass burning aerosol transport and vertical distribution over the South African-Atlantic region: Aerosol Transport Over SE Atlantic. United States: N. p., 2017. Web. doi:10.1002/2016JD026421.
Das, Sampa, Harshvardhan, H., Bian, Huisheng, Chin, Mian, Curci, Gabriele, Protonotariou, Anna P., Mielonen, Tero, Zhang, Kai, Wang, Hailong, & Liu, Xiaohong. Biomass burning aerosol transport and vertical distribution over the South African-Atlantic region: Aerosol Transport Over SE Atlantic. United States. doi:10.1002/2016JD026421.
Das, Sampa, Harshvardhan, H., Bian, Huisheng, Chin, Mian, Curci, Gabriele, Protonotariou, Anna P., Mielonen, Tero, Zhang, Kai, Wang, Hailong, and Liu, Xiaohong. Wed . "Biomass burning aerosol transport and vertical distribution over the South African-Atlantic region: Aerosol Transport Over SE Atlantic". United States. doi:10.1002/2016JD026421.
@article{osti_1406681,
title = {Biomass burning aerosol transport and vertical distribution over the South African-Atlantic region: Aerosol Transport Over SE Atlantic},
author = {Das, Sampa and Harshvardhan, H. and Bian, Huisheng and Chin, Mian and Curci, Gabriele and Protonotariou, Anna P. and Mielonen, Tero and Zhang, Kai and Wang, Hailong and Liu, Xiaohong},
abstractNote = {Aerosols from wild-land fires could significantly perturb the global radiation balance and induce the climate change. In this study, the Community Atmospheric Model version 5 (CAM5) with prescribed daily fire aerosol emissions is used to investigate the spatial and seasonal characteristics of radiative forcings of wildfire aerosols including black carbon (BC) and particulate organic matter (POM). The global annual mean direct radiative forcing (DRF) of all fire aerosols is 0.15 W m-2, mainly due to the absorption of fire BC (0.25 W m-2), while fire POM induces a weak negative forcing (-0.05 W m-2). Strong positive DRF is found in the Arctic and in the oceanic regions west of South Africa and South America as a result of amplified absorption of fire BC above low-level clouds, in general agreement with satellite observations. The global annual mean cloud radiative forcing due to all fire aerosols is -0.70 W m-2, resulting mainly from the fire POM indirect forcing (-0.59 W m-2). The large cloud liquid water path over land areas of the Arctic favors the strong fire aerosol indirect forcing (up to -15 W m-2) during the Arctic summer. Significant surface cooling, precipitation reduction and low-level cloud amount increase are also found in the Arctic summer as a result of the fire aerosol indirect effect. The global annual mean surface albedo forcing over land areas (0.03 W m-2) is mainly due to the fire BC-on-snow forcing (0.02 W m-2) with the maximum albedo forcing occurring in spring (0.12 W m-2) when snow starts to melt.},
doi = {10.1002/2016JD026421},
journal = {Journal of Geophysical Research: Atmospheres},
issn = {2169-897X},
number = 12,
volume = 122,
place = {United States},
year = {2017},
month = {6}
}

Works referenced in this record:

Organic Aerosol Growth Mechanisms and Their Climate-Forcing Implications
journal, December 2004


The Retrieval of Profiles of Particulate Extinction from Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) Data: Algorithm Description
journal, June 2009

  • Young, Stuart A.; Vaughan, Mark A.
  • Journal of Atmospheric and Oceanic Technology, Vol. 26, Issue 6
  • DOI: 10.1175/2008JTECHA1221.1

Toward a minimal representation of aerosols in climate models: description and evaluation in the Community Atmosphere Model CAM5
journal, January 2012

  • Liu, X.; Easter, R. C.; Ghan, S. J.
  • Geoscientific Model Development, Vol. 5, Issue 3
  • DOI: 10.5194/gmd-5-709-2012

Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom Prescribed intercomparison study
journal, January 2013

  • Stier, P.; Schutgens, N. A. J.; Bellouin, N.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 6
  • DOI: 10.5194/acp-13-3245-2013

The global 3-D distribution of tropospheric aerosols as characterized by CALIOP
journal, January 2013

  • Winker, D. M.; Tackett, J. L.; Getzewich, B. J.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 6
  • DOI: 10.5194/acp-13-3345-2013

Aerosol indirect effect on warm clouds over South-East Atlantic, from co-located MODIS and CALIPSO observations
journal, January 2013

  • Costantino, L.; Bréon, F. -M.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 1
  • DOI: 10.5194/acp-13-69-2013

Construction of a 1° × 1° fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model
journal, September 1999

  • Cooke, W. F.; Liousse, C.; Cachier, H.
  • Journal of Geophysical Research: Atmospheres, Vol. 104, Issue D18
  • DOI: 10.1029/1999JD900187

Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations
journal, January 2013

  • Myhre, G.; Samset, B. H.; Schulz, M.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 4
  • DOI: 10.5194/acp-13-1853-2013

Aerosols, Climate, and the Hydrological Cycle
journal, December 2001


Bounding the role of black carbon in the climate system: A scientific assessment: BLACK CARBON IN THE CLIMATE SYSTEM
journal, June 2013

  • Bond, T. C.; Doherty, S. J.; Fahey, D. W.
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 11
  • DOI: 10.1002/jgrd.50171

Evaluation of the aerosol vertical distribution in global aerosol models through comparison against CALIOP measurements: AeroCom phase II results: AEROSOL PROFILES IN AEROCOM II GCM
journal, June 2016

  • Koffi, Brigitte; Schulz, Michael; Bréon, François-Marie
  • Journal of Geophysical Research: Atmospheres, Vol. 121, Issue 12
  • DOI: 10.1002/2015JD024639

Aerosol classification from airborne HSRL and comparisons with the CALIPSO vertical feature mask
journal, January 2013

  • Burton, S. P.; Ferrare, R. A.; Vaughan, M. A.
  • Atmospheric Measurement Techniques, Vol. 6, Issue 5
  • DOI: 10.5194/amt-6-1397-2013

Ocean–Cloud–Atmosphere–Land Interactions in the Southeastern Pacific: The VOCALS Program
journal, March 2014

  • Mechoso, C. R.; Wood, R.; Weller, R.
  • Bulletin of the American Meteorological Society, Vol. 95, Issue 3
  • DOI: 10.1175/BAMS-D-11-00246.1

Sensitivity of Simulated Climate to Horizontal and Vertical Resolution in the ECHAM5 Atmosphere Model
journal, August 2006

  • Roeckner, E.; Brokopf, R.; Esch, M.
  • Journal of Climate, Vol. 19, Issue 16
  • DOI: 10.1175/JCLI3824.1

Global view of aerosol vertical distributions from CALIPSO lidar measurements and GOCART simulations: Regional and seasonal variations
journal, January 2010

  • Yu, Hongbin; Chin, Mian; Winker, David M.
  • Journal of Geophysical Research, Vol. 115
  • DOI: 10.1029/2009JD013364

Adaptive detrainment in a convective parametrization
journal, August 2011

  • Derbyshire, S. H.; Maidens, A. V.; Milton, S. F.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 137, Issue 660
  • DOI: 10.1002/qj.875

Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis
journal, January 2015

  • Buchard, V.; da Silva, A. M.; Colarco, P. R.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 10
  • DOI: 10.5194/acp-15-5743-2015

Boundary layer regulation in the southeast Atlantic cloud microphysics during the biomass burning season as seen by the A-train satellite constellation: SE ATLANTIC CLOUDS AND BIOMASS BURNING
journal, October 2014

  • Painemal, David; Kato, Seiji; Minnis, Patrick
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 19
  • DOI: 10.1002/2014JD022182

Light absorption by pollution, dust, and biomass burning aerosols: a global model study and evaluation with AERONET measurements
journal, January 2009


The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm
journal, October 2009

  • Omar, Ali H.; Winker, David M.; Vaughan, Mark A.
  • Journal of Atmospheric and Oceanic Technology, Vol. 26, Issue 10
  • DOI: 10.1175/2009JTECHA1231.1

Improvements to the OMI near-UV aerosol algorithm using A-train CALIOP and AIRS observations
journal, January 2013


Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations
journal, January 2006

  • Schulz, M.; Textor, C.; Kinne, S.
  • Atmospheric Chemistry and Physics, Vol. 6, Issue 12
  • DOI: 10.5194/acp-6-5225-2006

Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009)
journal, January 2010

  • van der Werf, G. R.; Randerson, J. T.; Giglio, L.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 23
  • DOI: 10.5194/acp-10-11707-2010

Stratocumulus cloud thickening beneath layers of absorbing smoke aerosol
journal, January 2010


Soot and smoke aerosol may not warm climate: SOOT AND SMOKE AEROSOL MAY NOT WARM CLIMATE
journal, November 2003

  • Penner, Joyce E.; Zhang, Sophia Y.; Chuang, Catherine C.
  • Journal of Geophysical Research: Atmospheres, Vol. 108, Issue D21
  • DOI: 10.1029/2003JD003409

Atmospheric component of the MPI-M Earth System Model: ECHAM6: ECHAM6
journal, April 2013

  • Stevens, Bjorn; Giorgetta, Marco; Esch, Monika
  • Journal of Advances in Modeling Earth Systems, Vol. 5, Issue 2
  • DOI: 10.1002/jame.20015

Analysis and quantification of the diversities of aerosol life cycles within AeroCom
journal, January 2006

  • Textor, C.; Schulz, M.; Guibert, S.
  • Atmospheric Chemistry and Physics, Vol. 6, Issue 7
  • DOI: 10.5194/acp-6-1777-2006

Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground-based aerosol optical depth
journal, January 2010

  • Colarco, Peter; da Silva, Arlindo; Chin, Mian
  • Journal of Geophysical Research, Vol. 115, Issue D14
  • DOI: 10.1029/2009JD012820

Fully Automated Detection of Cloud and Aerosol Layers in the CALIPSO Lidar Measurements
journal, October 2009

  • Vaughan, Mark A.; Powell, Kathleen A.; Winker, David M.
  • Journal of Atmospheric and Oceanic Technology, Vol. 26, Issue 10
  • DOI: 10.1175/2009JTECHA1228.1

Black carbon vertical profiles strongly affect its radiative forcing uncertainty
journal, January 2013

  • Samset, B. H.; Myhre, G.; Schulz, M.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 5
  • DOI: 10.5194/acp-13-2423-2013

Black carbon semi-direct effects on cloud cover: review and synthesis
journal, January 2010


Emission of trace gases and aerosols from biomass burning
journal, December 2001

  • Andreae, M. O.; Merlet, P.
  • Global Biogeochemical Cycles, Vol. 15, Issue 4
  • DOI: 10.1029/2000GB001382

The semi-direct aerosol effect: Impact of absorbing aerosols on marine stratocumulus
journal, April 2004

  • Johnson, B. T.; Shine, K. P.; Forster, P. M.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 130, Issue 599
  • DOI: 10.1256/qj.03.61

Analysis of aerosol-cloud interaction from multi-sensor satellite observations: AEROSOL-CLOUD INTERACTION FROM SPACE
journal, June 2010

  • Costantino, Lorenzo; Bréon, François-Marie
  • Geophysical Research Letters, Vol. 37, Issue 11
  • DOI: 10.1029/2009GL041828

An AeroCom initial assessment – optical properties in aerosol component modules of global models
journal, January 2006

  • Kinne, S.; Schulz, M.; Textor, C.
  • Atmospheric Chemistry and Physics, Vol. 6, Issue 7
  • DOI: 10.5194/acp-6-1815-2006

Effects of aerosols on trade wind cumuli over the Indian Ocean: Model simulations
journal, April 2006

  • McFarquhar, Greg M.; Wang, Hailong
  • Quarterly Journal of the Royal Meteorological Society, Vol. 132, Issue 616
  • DOI: 10.1256/qj.04.179

Direct and semidirect aerosol effects of southern African biomass burning aerosol
journal, January 2011

  • Sakaeda, Naoko; Wood, Robert; Rasch, Philip J.
  • Journal of Geophysical Research, Vol. 116, Issue D12
  • DOI: 10.1029/2010JD015540

An evaluation of CALIOP/CALIPSO's aerosol-above-cloud detection and retrieval capability over North America: CALIOP VERSUS HSRL AEROSOL-ABOVE-CLOUDS
journal, January 2014

  • Kacenelenbogen, M.; Redemann, J.; Vaughan, M. A.
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 1
  • DOI: 10.1002/2013JD020178

Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom
journal, January 2006

  • Dentener, F.; Kinne, S.; Bond, T.
  • Atmospheric Chemistry and Physics, Vol. 6, Issue 12
  • DOI: 10.5194/acp-6-4321-2006

Direct and semi-direct radiative forcing of smoke aerosols over clouds
journal, January 2012


Application of the CALIOP layer product to evaluate the vertical distribution of aerosols estimated by global models: AeroCom phase I results: AEROSOL PROFILES IN GLOBAL MODELS
journal, May 2012

  • Koffi, Brigitte; Schulz, Michael; Bréon, Francois-Marie
  • Journal of Geophysical Research: Atmospheres, Vol. 117, Issue D10
  • DOI: 10.1029/2011JD016858

How do A-train sensors intercompare in the retrieval of above-cloud aerosol optical depth? A case study-based assessment: A-TRAIN ABOVE-CLOUD AEROSOL OPTICAL DEPTH
journal, January 2014

  • Jethva, Hiren; Torres, Omar; Waquet, Fabien
  • Geophysical Research Letters, Vol. 41, Issue 1
  • DOI: 10.1002/2013GL058405

Anthropogenic and natural contributions to regional trends in aerosol optical depth, 1980–2006
journal, January 2009

  • Streets, David G.; Yan, Fang; Chin, Mian
  • Journal of Geophysical Research, Vol. 114
  • DOI: 10.1029/2008JD011624

The effect of overlying absorbing aerosol layers on remote sensing retrievals of cloud effective radius and cloud optical depth
journal, April 2004

  • Haywood, Jim M.; Osborne, Simon R.; Abel, Steven J.
  • Quarterly Journal of the Royal Meteorological Society, Vol. 130, Issue 598
  • DOI: 10.1256/qj.03.100

The direct radiative effect of biomass burning aerosols over southern Africa
journal, January 2005

  • Abel, S. J.; Highwood, E. J.; Haywood, J. M.
  • Atmospheric Chemistry and Physics, Vol. 5, Issue 7
  • DOI: 10.5194/acp-5-1999-2005

Estimating the direct radiative effect of absorbing aerosols overlying marine boundary layer clouds in the southeast Atlantic using MODIS and CALIOP: ABOVE-CLOUD DARE FROM MODIS AND CALIOP
journal, May 2013

  • Meyer, Kerry; Platnick, Steven; Oreopoulos, Lazaros
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 10
  • DOI: 10.1002/jgrd.50449

The vertical distribution of black carbon in CMIP5 models: Comparison to observations and the importance of convective transport
journal, April 2014

  • Allen, Robert J.; Landuyt, William
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 8
  • DOI: 10.1002/2014JD021595

Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation
journal, October 2001

  • Bey, Isabelle; Jacob, Daniel J.; Yantosca, Robert M.
  • Journal of Geophysical Research: Atmospheres, Vol. 106, Issue D19
  • DOI: 10.1029/2001JD000807

Global evaluation of the Collection 5 MODIS dark-target aerosol products over land
journal, January 2010

  • Levy, R. C.; Remer, L. A.; Kleidman, R. G.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 21
  • DOI: 10.5194/acp-10-10399-2010

Relaxed Arakawa-Schubert. A Parameterization of Moist Convection for General Circulation Models
journal, June 1992


Impact of radiatively interactive dust aerosols in the NASA GEOS-5 climate model: Sensitivity to dust particle shape and refractive index: MODELING DUST TRANSPORT AND OPTICS
journal, January 2014

  • Colarco, Peter R.; Nowottnick, Edward P.; Randles, Cynthia A.
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 2
  • DOI: 10.1002/2013JD020046

Optical Properties of Aerosols and Clouds: The Software Package OPAC
journal, May 1998


Satellite-observed pollution from Southern Hemisphere biomass burning
journal, January 2006

  • Edwards, D. P.; Emmons, L. K.; Gille, J. C.
  • Journal of Geophysical Research, Vol. 111, Issue D14
  • DOI: 10.1029/2005JD006655

CALIPSO Lidar Description and Performance Assessment
journal, July 2009

  • Hunt, William H.; Winker, David M.; Vaughan, Mark A.
  • Journal of Atmospheric and Oceanic Technology, Vol. 26, Issue 7
  • DOI: 10.1175/2009JTECHA1223.1

Interannual variability in global biomass burning emissions from 1997 to 2004
journal, January 2006

  • van der Werf, G. R.; Randerson, J. T.; Giglio, L.
  • Atmospheric Chemistry and Physics, Vol. 6, Issue 11
  • DOI: 10.5194/acp-6-3423-2006

Evaluation of CALIOP 532 nm aerosol optical depth over opaque water clouds
journal, January 2015