skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Impact resistant battery enclosure systems

Abstract

Battery enclosure arrangements for a vehicular battery system. The arrangements, capable of impact resistance include plurality of battery cells and a plurality of kinetic energy absorbing elements. The arrangements further include a frame configured to encase the plurality of the kinetic energy absorbing elements and the battery cells. In some arrangements the frame and/or the kinetic energy absorbing elements can be made of topologically interlocked materials.

Inventors:
; ; ;
Publication Date:
Research Org.:
PURDUE RESEARCH FOUNDATION, West Lafayette, IN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1406528
Patent Number(s):
9,806,306
Application Number:
14/551,670
Assignee:
PURDUE RESEARCH FOUNDATION ARPA-E
DOE Contract Number:  
AR0000378
Resource Type:
Patent
Resource Relation:
Patent File Date: 2014 Nov 24
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; 36 MATERIALS SCIENCE

Citation Formats

Tsutsui, Waterloo, Feng, Yuezhong, Chen, Weinong Wayne, and Siegmund, Thomas Heinrich. Impact resistant battery enclosure systems. United States: N. p., 2017. Web.
Tsutsui, Waterloo, Feng, Yuezhong, Chen, Weinong Wayne, & Siegmund, Thomas Heinrich. Impact resistant battery enclosure systems. United States.
Tsutsui, Waterloo, Feng, Yuezhong, Chen, Weinong Wayne, and Siegmund, Thomas Heinrich. Tue . "Impact resistant battery enclosure systems". United States. doi:. https://www.osti.gov/servlets/purl/1406528.
@article{osti_1406528,
title = {Impact resistant battery enclosure systems},
author = {Tsutsui, Waterloo and Feng, Yuezhong and Chen, Weinong Wayne and Siegmund, Thomas Heinrich},
abstractNote = {Battery enclosure arrangements for a vehicular battery system. The arrangements, capable of impact resistance include plurality of battery cells and a plurality of kinetic energy absorbing elements. The arrangements further include a frame configured to encase the plurality of the kinetic energy absorbing elements and the battery cells. In some arrangements the frame and/or the kinetic energy absorbing elements can be made of topologically interlocked materials.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Oct 31 00:00:00 EDT 2017},
month = {Tue Oct 31 00:00:00 EDT 2017}
}

Patent:

Save / Share:

Works referenced in this record:

Designing hybrid materials
journal, November 2003


Hybrids to fill holes in material property space
journal, September 2005


Behaviour of uniaxially preloaded aluminium plates subjected to high-velocity impact
journal, July 2011

  • García-Castillo, Shirley K.; Sánchez-Sáez, Sonia; Barbero, Enrique
  • Mechanics Research Communications, Vol. 38, Issue 5, p. 404-407
  • DOI: 10.1016/j.mechrescom.2011.05.013

Topological interlocking of platonic solids: A way to new materials and structures
journal, January 2003

  • Dyskin, A. V.; Estrin, Y.; Kanel-Belov, A. J.
  • Philosophical Magazine Letters, Vol. 83, Issue 3, p. 197-203
  • DOI: 10.1080/0950083031000065226

Interlocking properties of buckyballs
journal, December 2003


Topological interlocking as a material design concept
journal, August 2011

  • Estrin, Y.; Dyskin, A. V.; Pasternak, E.
  • Materials Science and Engineering: C, Vol. 31, Issue 6, p. 1189-1194
  • DOI: 10.1016/j.msec.2010.11.011

The principle of topological interlocking in extraterrestrial construction
journal, July 2005


Damage tolerance of a stitched carbon/epoxy laminate
journal, January 1997


Negative stiffness of a layer with topologically interlocked elements
journal, January 2004


Point loading of assemblies of interlocked cube-shaped elements
journal, December 2008

  • Schaare, S.; Dyskin, A. V.; Estrin, Y.
  • International Journal of Engineering Science, Vol. 46, Issue 12, p. 1228-1238
  • DOI: 10.1016/j.ijengsci.2008.06.012

Experiments and Numerical Simulations of Interlocked Materials
journal, June 2008


Energy absorption and ductile failure in metal sheets under lateral indentation by a sphere
journal, November 2000

  • Simonsen, Bo Cerup; Lauridsen, Lars Peder
  • International Journal of Impact Engineering, Vol. 24, Issue 10, p. 1017-1039
  • DOI: 10.1016/S0734-743X(00)00024-5

Topological interlocking of protective tiles for the space shuttle
journal, June 2003

  • Estrin, Y.; Dyskin, A. V.; Pasternak, E.
  • Philosophical Magazine Letters, Vol. 83, Issue 6, p. 351-355
  • DOI: 10.1080/0950083031000120873

Improvement of sound absorption and flexural compliance of porous alumina-mullite ceramics by engineering the microstructure and segmentation into topologically interlocked blocks
journal, November 2013


A model of high speed penetration into ductile targets
journal, February 1998

  • Ben-Dor, G.; Dubinsky, A.; Elperin, T.
  • Theoretical and Applied Fracture Mechanics, Vol. 28, Issue 3, p. 237-239
  • DOI: 10.1016/S0167-8442(98)00009-3

Ballistic impact on bi-layer alumina/aluminium armor: A semi-analytical approach
journal, February 2013

  • Chi, Runqiang; Serjouei, Ahmad; Sridhar, Idapalapati
  • International Journal of Impact Engineering, Vol. 52, p. 37-46
  • DOI: 10.1016/j.ijimpeng.2012.10.001

Local inertial effects in dynamic fragmentation
journal, January 1982

  • Grady, D. E.
  • Journal of Applied Physics, Vol. 53, Issue 1, p. 322-325
  • DOI: 10.1063/1.329934

Dynamic fragmentation of brittle solids: a multi-scale model
journal, January 2002


Energy absorption during projectile perforation of thin steel plates and the kinetic energy of ejected fragments
journal, October 2009

  • Dean, J.; Dunleavy, C. S.; Brown, P. M.
  • International Journal of Impact Engineering, Vol. 36, Issue 10-11, p. 1250-1258
  • DOI: 10.1016/j.ijimpeng.2009.05.002

A numerical investigation of the influence of friction on energy absorption by a high-strength fabric subjected to ballistic impact
journal, August 2006