skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: MOF-Sensitized Solar Cells Enabled by a Pillared Porphyrin Framework

Abstract

Metal–organic frameworks (MOFs) are highly ordered, functionally tunable supramolecular materials with the potential to improve dye-sensitized solar cells (DSSCs). Several recent reports have indicated that photocurrent can be generated in Grätzel-type DSSC devices when MOFs are used as the sensitizer. However, the specific role(s) of the incorporated MOFs and the potential influence of residual MOF precursor species on device performance are unclear. Herein, we describe the assembly and characterization of a simplified DSSC platform in which isolated MOF crystals are used as the sensitizer in a planar device architecture. We selected a pillared porphyrin framework (PPF) as the MOF sensitizer, taking particular care to avoid contamination from light-absorbing MOF precursors. Photovoltaic and electrochemical characterization under simulated 1-sun and wavelength-selective illumination revealed photocurrent generation that is clearly ascribable to the PPF MOF. In conclusion, continued refinement of highly versatile MOF structure and chemistry holds promise for dramatic improvements in emerging photovoltaic technologies.

Authors:
ORCiD logo [1]; ORCiD logo [1];  [2];  [1];  [2];  [2];  [1];  [2]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  2. Sandia National Lab. (SNL-CA), Livermore, CA (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1406370
Report Number(s):
SAND-2017-11246J
Journal ID: ISSN 1932-7447; 658036; TRN: US1703133
Grant/Contract Number:
AC04-94AL85000
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Volume: 121; Journal Issue: 9; Journal ID: ISSN 1932-7447
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 14 SOLAR ENERGY

Citation Formats

Spoerke, Erik D., Small, Leo J., Foster, Michael E., Wheeler, Jill, Ullman, Andrew M., Stavila, Vitalie, Rodriguez, Mark, and Allendorf, Mark D. MOF-Sensitized Solar Cells Enabled by a Pillared Porphyrin Framework. United States: N. p., 2017. Web. doi:10.1021/acs.jpcc.6b11251.
Spoerke, Erik D., Small, Leo J., Foster, Michael E., Wheeler, Jill, Ullman, Andrew M., Stavila, Vitalie, Rodriguez, Mark, & Allendorf, Mark D. MOF-Sensitized Solar Cells Enabled by a Pillared Porphyrin Framework. United States. doi:10.1021/acs.jpcc.6b11251.
Spoerke, Erik D., Small, Leo J., Foster, Michael E., Wheeler, Jill, Ullman, Andrew M., Stavila, Vitalie, Rodriguez, Mark, and Allendorf, Mark D. Wed . "MOF-Sensitized Solar Cells Enabled by a Pillared Porphyrin Framework". United States. doi:10.1021/acs.jpcc.6b11251. https://www.osti.gov/servlets/purl/1406370.
@article{osti_1406370,
title = {MOF-Sensitized Solar Cells Enabled by a Pillared Porphyrin Framework},
author = {Spoerke, Erik D. and Small, Leo J. and Foster, Michael E. and Wheeler, Jill and Ullman, Andrew M. and Stavila, Vitalie and Rodriguez, Mark and Allendorf, Mark D.},
abstractNote = {Metal–organic frameworks (MOFs) are highly ordered, functionally tunable supramolecular materials with the potential to improve dye-sensitized solar cells (DSSCs). Several recent reports have indicated that photocurrent can be generated in Grätzel-type DSSC devices when MOFs are used as the sensitizer. However, the specific role(s) of the incorporated MOFs and the potential influence of residual MOF precursor species on device performance are unclear. Herein, we describe the assembly and characterization of a simplified DSSC platform in which isolated MOF crystals are used as the sensitizer in a planar device architecture. We selected a pillared porphyrin framework (PPF) as the MOF sensitizer, taking particular care to avoid contamination from light-absorbing MOF precursors. Photovoltaic and electrochemical characterization under simulated 1-sun and wavelength-selective illumination revealed photocurrent generation that is clearly ascribable to the PPF MOF. In conclusion, continued refinement of highly versatile MOF structure and chemistry holds promise for dramatic improvements in emerging photovoltaic technologies.},
doi = {10.1021/acs.jpcc.6b11251},
journal = {Journal of Physical Chemistry. C},
number = 9,
volume = 121,
place = {United States},
year = {Wed Mar 01 00:00:00 EST 2017},
month = {Wed Mar 01 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4works
Citation information provided by
Web of Science

Save / Share:
  • Zn-Porphyrin dye has been synthesized by the reaction between aldehydes and pyrrole. The dye structure was confirmed by {sup 1}H NMR, {sup 13}C NMR spectrum. The functional group of the dye molecule was confirmed by FTIR spectrum. The UV-Vis-NIR absorption spectrum of Zn-Porphyrin in DMF solution was recorded in spectrophotometer. The UV-Vis NIR spectrum of dye exhibits a strong Soret band and Q-band. Cyclic Voltammograms were obtained with three electrode systems: Pt as counter electrode, saturated calomel used as a reference electrode and glassy carbon as working electrode at a scan rate of 100 mV/s. The curves recorded the oxidation ofmore » 0.5 mM compound Zn-Porphyrin in a dichloromethane solution containing 0.1M TBAP as supporting electrolyte, reveal two successive quasi reversible redox couples with the first anodic and cathodic peak potentials of -0.2 V and -1 V. The second anodic and cathodic peak potentials are 0.82 V and 0.01 V respectively.« less
  • A new three-dimensional porous framework [Co{sub 2}(bpdc){sub 2}(H{sub 2}bpz)]∙2(DMF)·5(H{sub 2}O) (1) (H{sub 2}bpdc=4,4′-biphenyldicarboxylic acid, H{sub 2}bpz=3,3′,5,5′-tetramethyl-4,4′-bipyrazole) has been solvothermally synthesized by employing mixed H{sub 2}bpdc and H{sub 2}bpz ligands. 1 is a pillared-layer framework based on a binuclear paddle-wheel Co{sub 2}(O{sub 2}C-R){sub 4} cluster, and exhibits a 2-fold interpenetrated 6-connected pcu topology. H{sub 2}bpz bridges Co{sub 2}(O{sub 2}C-R){sub 4} clusters with an angular coordination configuration to form interesting left- and right-handed helical chains. 1 possesses a two-dimensional porous system decorated by uncoordinated pyrazole –NH groups of H{sub 2}bpz, leading to high adsorption selectivities for CO{sub 2} over N{sub 2} andmore » H{sub 2}. In addition, the strong antiferromagnetic interactions between the Co{sup 2+} ions in cluster were observed. - Graphical abstract: A new pillared-layer porous framework has been constructed by paddle-wheel Co{sub 2}(O{sub 2}C-R){sub 4} cluster and H{sub 2}bpdc–H{sub 2}bpz mixed ligands, displaying adsorption selectivity and antiferromagnetic properties. Display Omitted - Highlights: • We present a new pillared-layer framework based on paddle-wheel Co{sub 2}(O{sub 2}C-R){sub 4} cluster. • The framework possesses a 2-fold interpenetrated pcu topology. • The framework displays adsorption selectivity and antiferromagnetic properties.« less
  • Abstract not provided.
  • Abstract not provided.
  • Cyanines are optically tunable dyes with high molar extinction coefficients, suitable for applications in co-sensitized dye-sensitized solar cells (DSCs); yet, barely thus applied. This might be due to the lack of a rational molecular design strategy that efficiently exploits cyanine properties. This study computationally re-designs these dyes, to broaden their optical absorption spectrum and create dye···TiO 2 binding and co-sensitization functionality. This is achieved via a stepwise molecular engineering approach. Firstly, the structural and optical properties of four parent dyes are experimentally and computationally investigated: 3,3’-diethyloxacarbocyanine iodide, 3,3’-diethylthiacarbocyanine iodide, 3,3’-diethylthiadicarbocyanine iodide and 3,3’-diethylthiatricarbocyanine iodide. Secondly, the molecules are theoretically modifiedmore » and their energetics are analyzed and compared to the parent dyes. A dye···TiO 2 anchoring group (carboxylic or cyanoacrylic acid), absent from the parent dyes, is chemically substituted at different molecular positions to investigate changes in optical absorption. We find that cyanoacrylic acid substitution at the para-quinoidal position affects the absorption wavelength of all parent dyes, with an optimal bathochromic shift of ca. 40 nm. The theoretical lengthening of the polymethine chain is also shown to effect dye absorption. Two molecularly engineered dyes are proposed as promising co-sensitizers. Finally, corresponding dye···TiO 2 adsorption energy calculations corroborate their applicability, demonstrating the potential of cyanine dyes in DSC research.« less