skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: What Randomized Benchmarking Actually Measures

Abstract

Randomized benchmarking (RB) is widely used to measure an error rate of a set of quantum gates, by performing random circuits that would do nothing if the gates were perfect. In the limit of no finite-sampling error, the exponential decay rate of the observable survival probabilities, versus circuit length, yields a single error metric r. For Clifford gates with arbitrary small errors described by process matrices, r was believed to reliably correspond to the mean, over all Clifford gates, of the average gate infidelity between the imperfect gates and their ideal counterparts. We show that this quantity is not a well-defined property of a physical gate set. It depends on the representations used for the imperfect and ideal gates, and the variant typically computed in the literature can differ from r by orders of magnitude. We present new theories of the RB decay that are accurate for all small errors describable by process matrices, and show that the RB decay curve is a simple exponential for all such errors. Here, these theories allow explicit computation of the error rate that RB measures (r), but as far as we can tell it does not correspond to the infidelity of a physicallymore » allowed (completely positive) representation of the imperfect gates.« less

Authors:
 [1];  [2];  [1];  [1];  [2]
  1. Sandia National Lab. (SNL-CA), Livermore, CA (United States)
  2. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
IARPA; USDOE
OSTI Identifier:
1406360
Report Number(s):
SAND-2017-10699J
Journal ID: ISSN 0031-9007; PRLTAO; 657513; TRN: US1703035
Grant/Contract Number:
AC04-94AL85000
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 119; Journal Issue: 13; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS

Citation Formats

Proctor, Timothy, Rudinger, Kenneth, Young, Kevin, Sarovar, Mohan, and Blume-Kohout, Robin. What Randomized Benchmarking Actually Measures. United States: N. p., 2017. Web. doi:10.1103/physrevlett.119.130502.
Proctor, Timothy, Rudinger, Kenneth, Young, Kevin, Sarovar, Mohan, & Blume-Kohout, Robin. What Randomized Benchmarking Actually Measures. United States. doi:10.1103/physrevlett.119.130502.
Proctor, Timothy, Rudinger, Kenneth, Young, Kevin, Sarovar, Mohan, and Blume-Kohout, Robin. 2017. "What Randomized Benchmarking Actually Measures". United States. doi:10.1103/physrevlett.119.130502.
@article{osti_1406360,
title = {What Randomized Benchmarking Actually Measures},
author = {Proctor, Timothy and Rudinger, Kenneth and Young, Kevin and Sarovar, Mohan and Blume-Kohout, Robin},
abstractNote = {Randomized benchmarking (RB) is widely used to measure an error rate of a set of quantum gates, by performing random circuits that would do nothing if the gates were perfect. In the limit of no finite-sampling error, the exponential decay rate of the observable survival probabilities, versus circuit length, yields a single error metric r. For Clifford gates with arbitrary small errors described by process matrices, r was believed to reliably correspond to the mean, over all Clifford gates, of the average gate infidelity between the imperfect gates and their ideal counterparts. We show that this quantity is not a well-defined property of a physical gate set. It depends on the representations used for the imperfect and ideal gates, and the variant typically computed in the literature can differ from r by orders of magnitude. We present new theories of the RB decay that are accurate for all small errors describable by process matrices, and show that the RB decay curve is a simple exponential for all such errors. Here, these theories allow explicit computation of the error rate that RB measures (r), but as far as we can tell it does not correspond to the infidelity of a physically allowed (completely positive) representation of the imperfect gates.},
doi = {10.1103/physrevlett.119.130502},
journal = {Physical Review Letters},
number = 13,
volume = 119,
place = {United States},
year = 2017,
month = 9
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on September 28, 2018
Publisher's Version of Record

Save / Share:
  • Purpose: Whole pelvic intensity-modulated radiotherapy (IMRT) is increasingly being used to treat cervix cancer and other gynecologic tumors. However, tumor and normal organ movement during treatment can substantially detract from the benefits of this approach. This study explored the effect of internal anatomic changes on the dose delivered to the tumor and organs at risk using a strategy integrating deformable soft-tissue modeling with simulated dose accumulation. Methods and Materials: Twenty patients with cervix cancer underwent baseline and weekly pelvic magnetic resonance imaging during treatment. Interfraction organ motion and delivered (accumulated) dose was modeled for three treatment scenarios: four-field box, large-marginmore » whole pelvic IMRT (20-mm planning target volume, but 10 mm inferiorly) and small-margin IMRT (5-mm planning target volume). Results: Individually, the planned dose was not the same as the simulated delivered dose; however, when taken as a group, this was not statistically significant for the four-field box and large-margin IMRT plans. The small-margin IMRT plans yielded adequate target coverage in most patients; however, significant target underdosing occurred in 1 patient who displayed excessive, unpredictable internal target movement. The delivered doses to the organs at risk were significantly reduced with the small-margin plan, although substantial variability was present among the patients. Conclusion: Simulated dose accumulation might provide a more accurate depiction of the target and organ at risk coverage during fractionated whole pelvic IMRT for cervical cancer. The adequacy of primary tumor coverage using 5-mm planning target volume margins is contingent on the use of daily image-guided setup.« less
  • We reviewed glare models with an eye for missing conditions or inconsistencies. We found ambiguities as to when to use small source versus large source models, and as to what constitutes a glare source in a complex scene. We also found surprisingly little information validating the assumed independence of the factors driving glare. A barrier to progress in glare research is the lack of a standardized dependent measure of glare. We inverted the glare models to predict luminance, and compared model predictions against the 1949 Luckiesh and Guth data that form the basis of many of them. The models performmore » surprisingly poorly, particularly with regards to the luminance-size relationship and additivity. Evaluating glare in complex scenes may require fundamental changes to form of the glare models.« less
  • We perform three-dimensional dust radiative transfer (RT) calculations on hydrodynamic simulations of isolated and merging disk galaxies in order to quantitatively study the dependence of observed-frame submillimeter (submm) flux density on galaxy properties. We find that submm flux density and star formation rate (SFR) are related in dramatically different ways for quiescently star-forming galaxies and starbursts. Because the stars formed in the merger-induced starburst do not dominate the bolometric luminosity and the rapid drop in dust mass and more compact geometry cause a sharp increase in dust temperature during the burst, starbursts are very inefficient at boosting submm flux densitymore » (e.g., a {approx}> 16 Multiplication-Sign boost in SFR yields a {approx}< 2 Multiplication-Sign boost in submm flux density). Moreover, the ratio of submm flux density to SFR differs significantly between the two modes; thus one cannot assume that the galaxies with highest submm flux density are necessarily those with the highest bolometric luminosity or SFR. These results have important consequences for the bright submillimeter-selected galaxy (SMG) population. Among them are: (1) The SMG population is heterogeneous. In addition to merger-driven starbursts, there is a subpopulation of galaxy pairs, where two disks undergoing a major merger but not yet strongly interacting are blended into one submm source because of the large ({approx}> 15'' or {approx}130 kpc at z = 2) beam of single-dish submm telescopes. (2) SMGs must be very massive (M{sub *} {approx}> 6 Multiplication-Sign 10{sup 10} M{sub Sun }). (3) The infall phase makes the SMG duty cycle a factor of a few greater than what is expected for a merger-driven starburst. Finally, we provide fitting functions for SCUBA and AzTEC submm flux densities as a function of SFR and dust mass and bolometric luminosity and dust mass; these should be useful for calculating submm flux density in semi-analytic models and cosmological simulations when performing full RT is computationally not feasible.« less
  • No abstract prepared.