skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Thermonuclear reactions probed at stellar-core conditions with laser-based inertial-confinement fusion

Abstract

Stars are giant thermonuclear plasma furnaces that slowly fuse the lighter elements in the universe into heavier elements, releasing energy, and generating the pressure required to prevent collapse. To understand stars, we must rely on nuclear reaction rate data obtained, up to now, under conditions very different from those of stellar cores. Here we show thermonuclear measurements of the 2H(d, n) 3He and 3H(t,2n) 4He S-factors at a range of densities (1.2–16 g cm –3) and temperatures (2.1–5.4 keV) that allow us to test the conditions of the hydrogen-burning phase of main-sequence stars. The relevant conditions are created using inertial-confinement fusion implosions at the National Ignition Facility. Here, our data agree within uncertainty with previous accelerator-based measurements and establish this approach for future experiments to measure other reactions and to test plasma-nuclear effects present in stellar interiors, such as plasma electron screening, directly in the environments where they occur.

Authors:
ORCiD logo [1];  [1];  [2];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [3];  [3];  [1];  [1];  [1];  [1];  [4];  [1];  [1] more »;  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1]; ORCiD logo [1];  [1];  [1];  [1];  [1] « less
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Ohio Univ., Athens, OH (United States)
  3. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  4. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1404861
Report Number(s):
LLNL-JRNL-692682
Journal ID: ISSN 1745-2473; TRN: US1703247
Grant/Contract Number:
AC52-07NA27344
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Nature Physics
Additional Journal Information:
Journal Volume: 13; Journal ID: ISSN 1745-2473
Publisher:
Nature Publishing Group (NPG)
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; 79 ASTRONOMY AND ASTROPHYSICS

Citation Formats

Casey, D. T., Sayre, D. B., Brune, C. R., Smalyuk, V. A., Weber, C. R., Tipton, R. E., Pino, J. E., Grim, G. P., Remington, B. A., Dearborn, D., Benedetti, L. R., Frenje, J. A., Gatu-Johnson, M., Hatarik, R., Izumi, N., McNaney, J. M., Ma, T., Kyrala, G. A., MacLaren, S., Salmonson, J., Khan, S. F., Pak, A., Hopkins, L. Berzak, LePape, S., Spears, B. K., Meezan, N. B., Divol, L., Yeamans, C. B., Caggiano, J. A., McNabb, D. P., Holunga, D. M., Chiarappa-Zucca, M., Kohut, T. R., and Parham, T. G.. Thermonuclear reactions probed at stellar-core conditions with laser-based inertial-confinement fusion. United States: N. p., 2017. Web. doi:10.1038/nphys4220.
Casey, D. T., Sayre, D. B., Brune, C. R., Smalyuk, V. A., Weber, C. R., Tipton, R. E., Pino, J. E., Grim, G. P., Remington, B. A., Dearborn, D., Benedetti, L. R., Frenje, J. A., Gatu-Johnson, M., Hatarik, R., Izumi, N., McNaney, J. M., Ma, T., Kyrala, G. A., MacLaren, S., Salmonson, J., Khan, S. F., Pak, A., Hopkins, L. Berzak, LePape, S., Spears, B. K., Meezan, N. B., Divol, L., Yeamans, C. B., Caggiano, J. A., McNabb, D. P., Holunga, D. M., Chiarappa-Zucca, M., Kohut, T. R., & Parham, T. G.. Thermonuclear reactions probed at stellar-core conditions with laser-based inertial-confinement fusion. United States. doi:10.1038/nphys4220.
Casey, D. T., Sayre, D. B., Brune, C. R., Smalyuk, V. A., Weber, C. R., Tipton, R. E., Pino, J. E., Grim, G. P., Remington, B. A., Dearborn, D., Benedetti, L. R., Frenje, J. A., Gatu-Johnson, M., Hatarik, R., Izumi, N., McNaney, J. M., Ma, T., Kyrala, G. A., MacLaren, S., Salmonson, J., Khan, S. F., Pak, A., Hopkins, L. Berzak, LePape, S., Spears, B. K., Meezan, N. B., Divol, L., Yeamans, C. B., Caggiano, J. A., McNabb, D. P., Holunga, D. M., Chiarappa-Zucca, M., Kohut, T. R., and Parham, T. G.. 2017. "Thermonuclear reactions probed at stellar-core conditions with laser-based inertial-confinement fusion". United States. doi:10.1038/nphys4220.
@article{osti_1404861,
title = {Thermonuclear reactions probed at stellar-core conditions with laser-based inertial-confinement fusion},
author = {Casey, D. T. and Sayre, D. B. and Brune, C. R. and Smalyuk, V. A. and Weber, C. R. and Tipton, R. E. and Pino, J. E. and Grim, G. P. and Remington, B. A. and Dearborn, D. and Benedetti, L. R. and Frenje, J. A. and Gatu-Johnson, M. and Hatarik, R. and Izumi, N. and McNaney, J. M. and Ma, T. and Kyrala, G. A. and MacLaren, S. and Salmonson, J. and Khan, S. F. and Pak, A. and Hopkins, L. Berzak and LePape, S. and Spears, B. K. and Meezan, N. B. and Divol, L. and Yeamans, C. B. and Caggiano, J. A. and McNabb, D. P. and Holunga, D. M. and Chiarappa-Zucca, M. and Kohut, T. R. and Parham, T. G.},
abstractNote = {Stars are giant thermonuclear plasma furnaces that slowly fuse the lighter elements in the universe into heavier elements, releasing energy, and generating the pressure required to prevent collapse. To understand stars, we must rely on nuclear reaction rate data obtained, up to now, under conditions very different from those of stellar cores. Here we show thermonuclear measurements of the 2H(d, n)3He and 3H(t,2n)4He S-factors at a range of densities (1.2–16 g cm–3) and temperatures (2.1–5.4 keV) that allow us to test the conditions of the hydrogen-burning phase of main-sequence stars. The relevant conditions are created using inertial-confinement fusion implosions at the National Ignition Facility. Here, our data agree within uncertainty with previous accelerator-based measurements and establish this approach for future experiments to measure other reactions and to test plasma-nuclear effects present in stellar interiors, such as plasma electron screening, directly in the environments where they occur.},
doi = {10.1038/nphys4220},
journal = {Nature Physics},
number = ,
volume = 13,
place = {United States},
year = 2017,
month = 8
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on August 7, 2018
Publisher's Version of Record

Save / Share:
  • Cited by 3
  • It is shown that direct-drive implosions on the OMEGA laser have achieved core conditions that would lead to significant alpha heating at incident energies available on the National Ignition Facility (NIF) scale. The extrapolation of the experimental results from OMEGA to NIF energy assumes only that the implosion hydrodynamic efficiency is unchanged at higher energies. This approach is independent of the uncertainties in the physical mechanism that degrade implosions on OMEGA, and relies solely on a volumetric scaling of the experimentally observed core conditions. It is estimated that the current best-performing OMEGA implosion [Regan et al., Phys. Rev. Lett. 117,more » 025001 (2016)] extrapolated to a 1.9 MJ laser driver with the same illumination configuration and laser-target coupling would produce 125 kJ of fusion energy with similar levels of alpha heating observed in current highest performing indirect-drive NIF implosions.« less
  • The physics of thermonuclear ignition in inertial confinement fusion (ICF) is presented in the familiar frame of a Lawson-type criterion. The product of the plasma pressure and confinement time Ptau for ICF is cast in terms of measurable parameters and its value is estimated for cryogenic implosions. An overall ignition parameter chi including pressure, confinement time, and temperature is derived to complement the product Ptau. A metric for performance assessment should include both chi and Ptau. The ignition parameter and the product Ptau are compared between inertial and magnetic-confinement fusion. It is found that cryogenic implosions on OMEGA[T. R. Boehlymore » et al., Opt. Commun. 133, 495 (1997)] have achieved Ptauapprox1.5 atm s comparable to large tokamaks such as the Joint European Torus [P. H. Rebut and B. E. Keen, Fusion Technol. 11, 13 (1987)] where Ptauapprox1 atm s. Since OMEGA implosions are relatively cold (Tapprox2 keV), their overall ignition parameter chiapprox0.02-0.03 is approx5x lower than in JET (chiapprox0.13), where the average temperature is about 10 keV.« less
  • Of late years, the volume ignition for inertial confinement fusion (ICF) has received great attention. In this paper, physical processes of volume ignition and burn from local thermodynamic equilibrium (LTE) transiting to the non-LTE are described, threshold values for the volume ignition are given, the property of the critical point that determines the maximum ion temperature in the burn process, and the quenching process of the thermonuclear system are discussed. Finally, a model is numerically computed, the above processes are well demonstrated, and the high gain is reached. {copyright} 1994 {ital American} {ital Institute} {ital of} {ital Physics}