skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Thermonuclear reactions probed at stellar-core conditions with laser-based inertial-confinement fusion

Abstract

Stars are giant thermonuclear plasma furnaces that slowly fuse the lighter elements in the universe into heavier elements, releasing energy, and generating the pressure required to prevent collapse. To understand stars, we must rely on nuclear reaction rate data obtained, up to now, under conditions very different from those of stellar cores. Here we show thermonuclear measurements of the 2H(d, n) 3He and 3H(t,2n) 4He S-factors at a range of densities (1.2–16 g cm –3) and temperatures (2.1–5.4 keV) that allow us to test the conditions of the hydrogen-burning phase of main-sequence stars. The relevant conditions are created using inertial-confinement fusion implosions at the National Ignition Facility. Here, our data agree within uncertainty with previous accelerator-based measurements and establish this approach for future experiments to measure other reactions and to test plasma-nuclear effects present in stellar interiors, such as plasma electron screening, directly in the environments where they occur.

Authors:
ORCiD logo [1];  [1];  [2];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [3];  [3];  [1];  [1];  [1];  [1];  [4];  [1];  [1] more »;  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1]; ORCiD logo [1];  [1];  [1];  [1];  [1] « less
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Ohio Univ., Athens, OH (United States)
  3. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  4. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1404861
Report Number(s):
LLNL-JRNL-692682
Journal ID: ISSN 1745-2473; TRN: US1703247
Grant/Contract Number:
AC52-07NA27344
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Nature Physics
Additional Journal Information:
Journal Volume: 13; Journal ID: ISSN 1745-2473
Publisher:
Nature Publishing Group (NPG)
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; 79 ASTRONOMY AND ASTROPHYSICS

Citation Formats

Casey, D. T., Sayre, D. B., Brune, C. R., Smalyuk, V. A., Weber, C. R., Tipton, R. E., Pino, J. E., Grim, G. P., Remington, B. A., Dearborn, D., Benedetti, L. R., Frenje, J. A., Gatu-Johnson, M., Hatarik, R., Izumi, N., McNaney, J. M., Ma, T., Kyrala, G. A., MacLaren, S., Salmonson, J., Khan, S. F., Pak, A., Hopkins, L. Berzak, LePape, S., Spears, B. K., Meezan, N. B., Divol, L., Yeamans, C. B., Caggiano, J. A., McNabb, D. P., Holunga, D. M., Chiarappa-Zucca, M., Kohut, T. R., and Parham, T. G. Thermonuclear reactions probed at stellar-core conditions with laser-based inertial-confinement fusion. United States: N. p., 2017. Web. doi:10.1038/nphys4220.
Casey, D. T., Sayre, D. B., Brune, C. R., Smalyuk, V. A., Weber, C. R., Tipton, R. E., Pino, J. E., Grim, G. P., Remington, B. A., Dearborn, D., Benedetti, L. R., Frenje, J. A., Gatu-Johnson, M., Hatarik, R., Izumi, N., McNaney, J. M., Ma, T., Kyrala, G. A., MacLaren, S., Salmonson, J., Khan, S. F., Pak, A., Hopkins, L. Berzak, LePape, S., Spears, B. K., Meezan, N. B., Divol, L., Yeamans, C. B., Caggiano, J. A., McNabb, D. P., Holunga, D. M., Chiarappa-Zucca, M., Kohut, T. R., & Parham, T. G. Thermonuclear reactions probed at stellar-core conditions with laser-based inertial-confinement fusion. United States. doi:10.1038/nphys4220.
Casey, D. T., Sayre, D. B., Brune, C. R., Smalyuk, V. A., Weber, C. R., Tipton, R. E., Pino, J. E., Grim, G. P., Remington, B. A., Dearborn, D., Benedetti, L. R., Frenje, J. A., Gatu-Johnson, M., Hatarik, R., Izumi, N., McNaney, J. M., Ma, T., Kyrala, G. A., MacLaren, S., Salmonson, J., Khan, S. F., Pak, A., Hopkins, L. Berzak, LePape, S., Spears, B. K., Meezan, N. B., Divol, L., Yeamans, C. B., Caggiano, J. A., McNabb, D. P., Holunga, D. M., Chiarappa-Zucca, M., Kohut, T. R., and Parham, T. G. Mon . "Thermonuclear reactions probed at stellar-core conditions with laser-based inertial-confinement fusion". United States. doi:10.1038/nphys4220.
@article{osti_1404861,
title = {Thermonuclear reactions probed at stellar-core conditions with laser-based inertial-confinement fusion},
author = {Casey, D. T. and Sayre, D. B. and Brune, C. R. and Smalyuk, V. A. and Weber, C. R. and Tipton, R. E. and Pino, J. E. and Grim, G. P. and Remington, B. A. and Dearborn, D. and Benedetti, L. R. and Frenje, J. A. and Gatu-Johnson, M. and Hatarik, R. and Izumi, N. and McNaney, J. M. and Ma, T. and Kyrala, G. A. and MacLaren, S. and Salmonson, J. and Khan, S. F. and Pak, A. and Hopkins, L. Berzak and LePape, S. and Spears, B. K. and Meezan, N. B. and Divol, L. and Yeamans, C. B. and Caggiano, J. A. and McNabb, D. P. and Holunga, D. M. and Chiarappa-Zucca, M. and Kohut, T. R. and Parham, T. G.},
abstractNote = {Stars are giant thermonuclear plasma furnaces that slowly fuse the lighter elements in the universe into heavier elements, releasing energy, and generating the pressure required to prevent collapse. To understand stars, we must rely on nuclear reaction rate data obtained, up to now, under conditions very different from those of stellar cores. Here we show thermonuclear measurements of the 2H(d, n)3He and 3H(t,2n)4He S-factors at a range of densities (1.2–16 g cm–3) and temperatures (2.1–5.4 keV) that allow us to test the conditions of the hydrogen-burning phase of main-sequence stars. The relevant conditions are created using inertial-confinement fusion implosions at the National Ignition Facility. Here, our data agree within uncertainty with previous accelerator-based measurements and establish this approach for future experiments to measure other reactions and to test plasma-nuclear effects present in stellar interiors, such as plasma electron screening, directly in the environments where they occur.},
doi = {10.1038/nphys4220},
journal = {Nature Physics},
number = ,
volume = 13,
place = {United States},
year = {Mon Aug 07 00:00:00 EDT 2017},
month = {Mon Aug 07 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on August 7, 2018
Publisher's Version of Record

Citation Metrics:
Cited by: 1work
Citation information provided by
Web of Science

Save / Share: