skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Develop and Manufacture an Ergonomically Sound Glovebox Glove Report

Abstract

Ergonomic injury and radiation exposure are two safety concerns for the Plutonium Facility at Los Alamos National Laboratory (LANL). This facility employs the largest number of gloveboxes (GB) at LANL with approximately 6000 gloves installed. The current GB glove design dates back to the 1960’s and is not based on true hand anatomy, revealing several issues: short fingers, inappropriate length from the wrist to finger webbing, nonexistent joint angles and incorrect thumb placement. These design flaws are directly related to elbow (lateral epicondylitis) and thumb (DeQuervain’s tenosynovitis) injuries. The current design also contributes to increased wear on the glove, causing unplanned glove openings (failures) which places workers at risk of exposure. An improved glovebox glove design has three significant benefits: 1) it will reduce the risk of injury, 2) it will improve comfort and productivity, and 3) it will reduce the risk of a glovebox failures. The combination of these three benefits has estimated savings of several million dollars. The new glove design incorporated the varied physical attributes of workers ranging from the 5 th percentile female to the 95th percentile male. Anthropometric hand dimensions along with current GB worker dimensions were used to develop the most comprehensive design specificationsmore » for the new glove. Collaboration with orthopedic hand surgeons also provided major contributtions to the design. The new glovebox glove was developed and manufactured incorporating over forty dimensions producing the most comprehensive ergonomically sound design. The new design received a LANL patent (patent attorney docket No: LANS 36USD1 “Protective Glove”, one of 20 highest patents awarded by the Richard P. Feynman Center for Innovation. The glove dimensions were inputed into a solid works model which was used to produce molds. The molds were then shipped to a glove manufacturer for production of the new glovebox gloves. The new glovebox gloves were tested against the presently used glovebox gloves for design validity. The testing included a subjective survey and four dexterity tests. The prototype was statistically significant in 3 dexterity tests and favorable on 8 out of 10 survey questions. The more ergonomically sound glovebox glove will improve worker comfort, mitigate glovebox worker injuries, and reduce glove breaches.« less

Authors:
 [1]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1402566
Report Number(s):
LA-UR-17-29530
DOE Contract Number:
AC52-06NA25396
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; Ergonomic Evaluations, Analysis and Assessment; ergonomics, glovebox glove

Citation Formats

Lawton, Cindy M. Develop and Manufacture an Ergonomically Sound Glovebox Glove Report. United States: N. p., 2017. Web. doi:10.2172/1402566.
Lawton, Cindy M. Develop and Manufacture an Ergonomically Sound Glovebox Glove Report. United States. doi:10.2172/1402566.
Lawton, Cindy M. 2017. "Develop and Manufacture an Ergonomically Sound Glovebox Glove Report". United States. doi:10.2172/1402566. https://www.osti.gov/servlets/purl/1402566.
@article{osti_1402566,
title = {Develop and Manufacture an Ergonomically Sound Glovebox Glove Report},
author = {Lawton, Cindy M.},
abstractNote = {Ergonomic injury and radiation exposure are two safety concerns for the Plutonium Facility at Los Alamos National Laboratory (LANL). This facility employs the largest number of gloveboxes (GB) at LANL with approximately 6000 gloves installed. The current GB glove design dates back to the 1960’s and is not based on true hand anatomy, revealing several issues: short fingers, inappropriate length from the wrist to finger webbing, nonexistent joint angles and incorrect thumb placement. These design flaws are directly related to elbow (lateral epicondylitis) and thumb (DeQuervain’s tenosynovitis) injuries. The current design also contributes to increased wear on the glove, causing unplanned glove openings (failures) which places workers at risk of exposure. An improved glovebox glove design has three significant benefits: 1) it will reduce the risk of injury, 2) it will improve comfort and productivity, and 3) it will reduce the risk of a glovebox failures. The combination of these three benefits has estimated savings of several million dollars. The new glove design incorporated the varied physical attributes of workers ranging from the 5th percentile female to the 95th percentile male. Anthropometric hand dimensions along with current GB worker dimensions were used to develop the most comprehensive design specifications for the new glove. Collaboration with orthopedic hand surgeons also provided major contributtions to the design. The new glovebox glove was developed and manufactured incorporating over forty dimensions producing the most comprehensive ergonomically sound design. The new design received a LANL patent (patent attorney docket No: LANS 36USD1 “Protective Glove”, one of 20 highest patents awarded by the Richard P. Feynman Center for Innovation. The glove dimensions were inputed into a solid works model which was used to produce molds. The molds were then shipped to a glove manufacturer for production of the new glovebox gloves. The new glovebox gloves were tested against the presently used glovebox gloves for design validity. The testing included a subjective survey and four dexterity tests. The prototype was statistically significant in 3 dexterity tests and favorable on 8 out of 10 survey questions. The more ergonomically sound glovebox glove will improve worker comfort, mitigate glovebox worker injuries, and reduce glove breaches.},
doi = {10.2172/1402566},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2017,
month =
}

Technical Report:

Save / Share:
  • Determine an ergonomic glovebox glove port center line location which will be used for standardization in new designs, thus allowing for predictable human work performance, reduced worker exposure to radiation and musculoskeletal injury risks, and improved worker comfort, efficiency, health, and safety.
  • A task was undertaken to determine primarily the permeation behavior of various glove compounds from four manufacturers. As part of the basic characterization task, the opportunity to obtain additional mechanical and thermal properties presented itself. Consequently, a total of fifteen gloves were characterized for permeation, Thermogravimetric Analysis, Puncture Resistance, Tensile Properties and Dynamic Mechanical Analysis. Detailed reports were written for each characterization technique used. This report contains the summary of the results.
  • Present day glovebox gloves at Los Alamos National Laboratory (LANL) are underdeveloped and ergonomically inaccurate. This problem results in numerous sprain and strain injuries every year for employees who perform glovebox work. In addition to injuries, using the current glovebox glove design also contributes to breaches and contamination. The current glove used today at LANL has several problems: (1) The length of the fingers is incorrect, (2) the web spacing between the fingers is nonexistent, (3) the angles between each digit on the finger are incorrect, (4) the thumb is placed inaccurately, and (5) the length of the hand ismore » incorrect. These problems present a need to correct the current glove design to decrease the risk of injuries, breaches, and contamination. Anthropometrics were researched to help find the best range of hand measurements to fix the current glove design. Anthropometrics is the measure of the human physical variation. Anthropometrics for this study were gathered from the American National Survey (ANSUR) data that was conducted by the U.S Army in 1988. The current glovebox glove uses anthropometrics from the 95th to 105th percentile range which is too large so the new gloves are going to implement data from a smaller range of percentile groups. The 105th percentile range represents measurements that exceed the human population but are needed to fit certain circumstance such as wearing several under gloves within the glovebox gloves. Anthropometrics used in this study include: 105th percentile measurements for joint circumference which was unchanged because the room for under gloves plus ease of hand insertion and extraction is needed, 80th percentile measurements for crotch length to allow workers to reach the web spacing in the glove, 20th percentile measurements for finger length to allow workers to reach the end of the glove, standard 10.5cm hand breadth to allow more room to accommodate under gloves, 45 degrees abduction angle for the thumb for better positioning, 45 degrees extension angle for the thumb for better positioning, and various angles for the other fingers to allow a more relaxed and natural fit. 3D modeling was used to implement the anthropometric data listed above onto an existing scanned solid model of a human hand. SolidWorks 2010 3-D modeling package was utilized to manipulate the hand model to represent the anthropometric data researched. The anthropometrics and modifications were reviewed by the University of New Mexico Department of Orthopedics hand surgeons. After all modifications and reviews were completed the model was printed out using stereolithography. The printed out model of the hand was used as a mold to create a prototype glovebox glove. The new mold was taken to Piercan USA to produce a 20mil Polyurethane/Hypalon glovebox glove. The Minnesota Dexterity test and Purdue Pegboard test were used to measure the dexterity of the prototype glovebox glove against a current 15 mil Hypalon LANL glovebox glove. Using the data from the tests a student t test was used to determine if there was a significant difference between the current hypalon glove results and the new prototype glove results. With a 95% confidence level the prototype showed to have a significantly lower mean difference from the current hypalon glovebox glove with the Minnesota Dexterity test. With a 95% confidence level the prototype showed to have a significantly higher mean difference from the current hypalon glovebox glove with the Purdue Pegboard test. A p value method was also performed to confirm the results of the student t test. A survey was also given to glovebox workers to determine if they preferred the new design. The best reaction from glovebox workers was the new thumb position, 73.2% of the sample population agreed with the new thumb position. Developing a new glovebox glove will improve the ergonomics of the hand for work performed, decrease exposure time, decreasing risk of breaching, increasing productivity, reducing injuries, and improving work performance. In the future the new glovebox glove can also be implemented in other research fields such as: pharmaceutical research and development, semiconducting industry, biohazard industry, and other laboratories conducting nuclear research and development.« less
  • Los Alamos National Laboratory (LANL) is committed to the protection of the workers, public, and environment while performing work and uses gloveboxes as engineered controls to protect workers from exposure to hazardous materials while performing plutonium operations. Glovebox gloves are a weak link in the engineered controls and are a major cause of radiation contamination events which can result in potential worker exposure and localized contamination making operational areas off-limits and putting programmatic work on hold. Each day of lost opportunity at Technical Area (TA) 55, Plutonium Facility (PF) 4 is estimated at $1.36 million. Between July 2011 and Junemore » 2013, TA-55-PF-4 had 65 glovebox glove breaches and failures with an average of 2.7 per month. The glovebox work follows the five step safety process promoted at LANL with a decision diamond interjected for whether or not a glove breach or failure event occurred in the course of performing glovebox work. In the event that no glove breach or failure is detected, there is an additional decision for whether or not contamination is detected. In the event that contamination is detected, the possibility for a glove breach or failure event is revisited.« less