skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Morphological and Electrochemical Characterization of Nanostructured Li 4Ti 5O 12 Electrodes Using Multiple Imaging Mode Synchrotron X-ray Computed Tomography

Abstract

In this study, synchrotron X-ray computed tomography has been utilized using two different imaging modes, absorption and Zernike phase contrast, to reconstruct the real three-dimensional (3D) morphology of nanostructured Li 4Ti 5O 12 (LTO) electrodes. The morphology of the high atomic number active material has been obtained using the absorption contrast mode, whereas the percolated solid network composed of active material and carbon-doped polymer binder domain (CBD) has been obtained using the Zernike phase contrast mode. The 3D absorption contrast image revealed that some LTO nano-particles tend to agglomerate and form secondary micro-sized particles with varying degrees of sphericity. The tortuosity of electrode’s pore and solid phases were found to have directional dependence, different from Bruggeman’s tortuosity commonly used in macro-homogeneous models. The electrode’s heterogeneous structure was investigated by developing a numerical model to simulate galvanostatic discharge process using the Zernike phase contrast mode. The inclusion of CBD in the Zernike phase contrast results in an integrated percolated network of active material and CBD that is highly suited for continuum modeling. As a result, the simulation results highlight the importance of using the real 3D geometry since the spatial distribution of physical and electrochemical properties have a strong non-uniformity duemore » to microstructural heterogeneities.« less

Authors:
ORCiD logo [1];  [2];  [2];  [1]; ORCiD logo [1];  [1];  [3];  [1]
  1. Univ. of Waterloo, Waterloo, ON (Canada)
  2. Univ. of Akron, Akron, OH (United States)
  3. Argonne National Lab. (ANL), Lemont, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
University of Akron; Natural Sciences and Engineering Research Council of Canada (NSERC); USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1402041
Grant/Contract Number:
AC02-06CH11357
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Journal of the Electrochemical Society
Additional Journal Information:
Journal Volume: 164; Journal Issue: 12; Journal ID: ISSN 0013-4651
Publisher:
The Electrochemical Society
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Image based modeling; Lithium-ion battery; Synchrotron X-ray computed tomography; Tortuosity; Lithium titanate oxide

Citation Formats

Kashkooli, Ali Ghorbani, Foreman, Evan, Farhad, Siamak, Lee, Dong Un, Feng, Kun, Lui, Gregory, De Andrade, Vincent, and Chen, Zhongwei. Morphological and Electrochemical Characterization of Nanostructured Li4Ti5O12 Electrodes Using Multiple Imaging Mode Synchrotron X-ray Computed Tomography. United States: N. p., 2017. Web. doi:10.1149/2.0101713jes.
Kashkooli, Ali Ghorbani, Foreman, Evan, Farhad, Siamak, Lee, Dong Un, Feng, Kun, Lui, Gregory, De Andrade, Vincent, & Chen, Zhongwei. Morphological and Electrochemical Characterization of Nanostructured Li4Ti5O12 Electrodes Using Multiple Imaging Mode Synchrotron X-ray Computed Tomography. United States. doi:10.1149/2.0101713jes.
Kashkooli, Ali Ghorbani, Foreman, Evan, Farhad, Siamak, Lee, Dong Un, Feng, Kun, Lui, Gregory, De Andrade, Vincent, and Chen, Zhongwei. 2017. "Morphological and Electrochemical Characterization of Nanostructured Li4Ti5O12 Electrodes Using Multiple Imaging Mode Synchrotron X-ray Computed Tomography". United States. doi:10.1149/2.0101713jes.
@article{osti_1402041,
title = {Morphological and Electrochemical Characterization of Nanostructured Li4Ti5O12 Electrodes Using Multiple Imaging Mode Synchrotron X-ray Computed Tomography},
author = {Kashkooli, Ali Ghorbani and Foreman, Evan and Farhad, Siamak and Lee, Dong Un and Feng, Kun and Lui, Gregory and De Andrade, Vincent and Chen, Zhongwei},
abstractNote = {In this study, synchrotron X-ray computed tomography has been utilized using two different imaging modes, absorption and Zernike phase contrast, to reconstruct the real three-dimensional (3D) morphology of nanostructured Li4Ti5O12 (LTO) electrodes. The morphology of the high atomic number active material has been obtained using the absorption contrast mode, whereas the percolated solid network composed of active material and carbon-doped polymer binder domain (CBD) has been obtained using the Zernike phase contrast mode. The 3D absorption contrast image revealed that some LTO nano-particles tend to agglomerate and form secondary micro-sized particles with varying degrees of sphericity. The tortuosity of electrode’s pore and solid phases were found to have directional dependence, different from Bruggeman’s tortuosity commonly used in macro-homogeneous models. The electrode’s heterogeneous structure was investigated by developing a numerical model to simulate galvanostatic discharge process using the Zernike phase contrast mode. The inclusion of CBD in the Zernike phase contrast results in an integrated percolated network of active material and CBD that is highly suited for continuum modeling. As a result, the simulation results highlight the importance of using the real 3D geometry since the spatial distribution of physical and electrochemical properties have a strong non-uniformity due to microstructural heterogeneities.},
doi = {10.1149/2.0101713jes},
journal = {Journal of the Electrochemical Society},
number = 12,
volume = 164,
place = {United States},
year = 2017,
month = 9
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on September 21, 2018
Publisher's Version of Record

Save / Share:
  • Characterizing internal impact damage in composites can be difficult, especially in structurally complex composites or those consisting of many materials. Many methods for nondestructive inspection/nondestructive testing (NDI/NDT) of materials have been known and in use for many years, including x-ray film, real-time, and digital radiographic techniques, and ultrasonic techniques. However, these techniques are generally not capable of three-dimensional (3D) mapping of complex damage patterns, which is necessary to visualize and understand damage cracking modes. Conventional x-ray radiography suffers from the loss of 3D information. Structural complexity and signal dispersion in materials with many interfaces significantly effect ultrasonic inspection techniques. Thismore » makes inspection scan interpretation difficult, especially in composites containing a number of different materials (i.e., polymer, ceramic, and metallic). X-ray computed tomography (CT) is broadly applicable to any material or test object through which a beam of penetrating radiation may be passed and detected, including metals, plastics, ceramics, metallic/nonmetallic composites, and assemblies. The principal advantage of CT is that it provides densitometric (that is, radiological density and geometry) images of thin cross sections through an object. Because of the absence of structural superposition, images are much easier to interpret than conventional radiological images. The user can quickly learn to read CT data because images correspond more closely to the way the human mind visualizes 3D structures than projection radiology (that is, film radiography, real-time radiography (RTR), and digital radiography (DR)). Any number of CT images, or slices, from scanning an object can be volumetrically reconstructed to produce a 3D attenuation map of the object. The 3D attenuation data can be rendered using multiplanar or 3D solid visualization. In multiplanar visualization there are four planes of view that can be defined to be anywhere in an object. These visualization modes produce easily interpretable images with very good spatial resolution and excellent dimensional capability. This paper will discuss current applications of advanced CT imaging to characterizing impact damage in metallic/nonmetallic composites. Examples, including encapsulated ceramics in metal-matrix-composites, will be discussed.« less
  • Li-Mg alloys are promising as positive electrodes (anodes) for Li-ion batteries due to the high Li storage capacity and the relatively lower volume change during the lithiation/delithiation process. They also present a unique opportunity to image the Li distribution through the electrode thickness at various delithiation states. In this work, spatial distributions of Li in electrochemically delithiated Li-Mg alloy electrodes have been quantitatively determined using neutron tomography. Specifically, the Li concentration profiles along thickness direction are determined. A rigorous analytical model to quantify the diffusion-controlled delithiation, accompanied by phase transition and boundary movement, has also been developed to explain themore » delithiation mechanism. The analytical modeling scheme successfully predicted the Li concentration profiles which agreed well with the experimental data. It is demonstrated that during discharge Li is removed by diffusion through the solid solution Li-Mg phases and this proceeds with β→α phase transition and the associated phase boundary movement through the thickness of the electrode. This is also accompanied by electrode thinning due to the change in molar volume during delithiation. In conclusion, following the approaches developed here, one can develop a rigorous and quantitative understanding of electrochemical delithiation in electrodes of electrochemical cells, similar to that in the present Li-Mg electrodes.« less
  • Purpose: Magnetic resonance imaging/diffusion weighted-imaging (MRI/DWI)-guided high-dose-rate (HDR) brachytherapy and {sup 18}F-fluorodeoxyglucose (FDG) — positron emission tomography/computed tomography (PET/CT)-guided intensity modulated radiation therapy (IMRT) for the definitive treatment of cervical cancer is a novel treatment technique. The purpose of this study was to report our analysis of dose-volume parameters predicting gross tumor volume (GTV) control. Methods and Materials: We analyzed the records of 134 patients with International Federation of Gynecology and Obstetrics stages IB1-IVB cervical cancer treated with combined MRI-guided HDR and IMRT from July 2009 to July 2011. IMRT was targeted to the metabolic tumor volume and lymph nodesmore » by use of FDG-PET/CT simulation. The GTV for each HDR fraction was delineated by use of T2-weighted or apparent diffusion coefficient maps from diffusion-weighted sequences. The D100, D90, and Dmean delivered to the GTV from HDR and IMRT were summed to EQD2. Results: One hundred twenty-five patients received all irradiation treatment as planned, and 9 did not complete treatment. All 134 patients are included in this analysis. Treatment failure in the cervix occurred in 24 patients (18.0%). Patients with cervix failures had a lower D100, D90, and Dmean than those who did not experience failure in the cervix. The respective doses to the GTV were 41, 58, and 136 Gy for failures compared with 67, 99, and 236 Gy for those who did not experience failure (P<.001). Probit analysis estimated the minimum D100, D90, and Dmean doses required for ≥90% local control to be 69, 98, and 260 Gy (P<.001). Conclusions: Total dose delivered to the GTV from combined MRI-guided HDR and PET/CT-guided IMRT is highly correlated with local tumor control. The findings can be directly applied in the clinic for dose adaptation to maximize local control.« less
  • Six selected cases demonstrate the appearance of subdural hematomas, tumor, stroke, and abscess on single-photon emission tomography. Conventional radionuclide images were obtained on every patient, and computed transmission tomographs were obtained on 4 of the patients. This early clinical experience suggests several promising areas for further investigation.
  • Purpose: To investigate the feasibility and value of positron emission tomography and computed tomography (PET/CT) for treatment verification after proton radiotherapy. Methods and Materials: This study included 9 patients with tumors in the cranial base, spine, orbit, and eye. Total doses of 1.8-3 GyE and 10 GyE (for an ocular melanoma) per fraction were delivered in 1 or 2 fields. Imaging was performed with a commercial PET/CT scanner for 30 min, starting within 20 min after treatment. The same treatment immobilization device was used during imaging for all but 2 patients. Measured PET/CT images were coregistered to the planning CTmore » and compared with the corresponding PET expectation, obtained from CT-based Monte Carlo calculations complemented by functional information. For the ocular case, treatment position was approximately replicated, and spatial correlation was deduced from reference clips visible in both the planning radiographs and imaging CT. Here, the expected PET image was obtained from an analytical model. Results: Good spatial correlation and quantitative agreement within 30% were found between the measured and expected activity. For head-and-neck patients, the beam range could be verified with an accuracy of 1-2 mm in well-coregistered bony structures. Low spine and eye sites indicated the need for better fixation and coregistration methods. An analysis of activity decay revealed as tissue-effective half-lives of 800-1,150 s. Conclusions: This study demonstrates the feasibility of postradiation PET/CT for in vivo treatment verification. It also indicates some technological and methodological improvements needed for optimal clinical application.« less