skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Compact Stars with Sequential QCD Phase Transitions

Publication Date:
Sponsoring Org.:
OSTI Identifier:
Grant/Contract Number:
Resource Type:
Journal Article: Publisher's Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 119; Journal Issue: 16; Related Information: CHORUS Timestamp: 2017-10-19 10:15:39; Journal ID: ISSN 0031-9007
American Physical Society
Country of Publication:
United States

Citation Formats

Alford, Mark, and Sedrakian, Armen. Compact Stars with Sequential QCD Phase Transitions. United States: N. p., 2017. Web. doi:10.1103/PhysRevLett.119.161104.
Alford, Mark, & Sedrakian, Armen. Compact Stars with Sequential QCD Phase Transitions. United States. doi:10.1103/PhysRevLett.119.161104.
Alford, Mark, and Sedrakian, Armen. 2017. "Compact Stars with Sequential QCD Phase Transitions". United States. doi:10.1103/PhysRevLett.119.161104.
title = {Compact Stars with Sequential QCD Phase Transitions},
author = {Alford, Mark and Sedrakian, Armen},
abstractNote = {},
doi = {10.1103/PhysRevLett.119.161104},
journal = {Physical Review Letters},
number = 16,
volume = 119,
place = {United States},
year = 2017,
month =

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on October 19, 2018
Publisher's Accepted Manuscript

Save / Share:
  • Cited by 1
  • We present a new scenario for the cooling of compact stars considering the central source of Cassiopeia A (Cas A). The Cas A observation shows that the central source is a compact star that has high effective temperature, and it is consistent with the cooling without exotic phases. The observation also gives the mass range of M {>=} 1.5 M {sub Sun }, which may conflict with the current plausible cooling scenario of compact stars. There are some cooled compact stars such as Vela or 3C58, which can barely be explained by the minimal cooling scenario, which includes the neutrinomore » emission by nucleon superfluidity (PBF). Therefore, we invoke the exotic cooling processes, where a heavier star cools faster than lighter one. However, the scenario seems to be inconsistent with the observation of Cas A. Therefore, we present a new cooling scenario to explain the observation of Cas A by constructing models that include a quark color superconducting (CSC) phase with a large energy gap; this phase appears at ultrahigh density regions and reduces neutrino emissivity. In our model, a compact star has a CSC quark core with a low neutrino emissivity surrounded by high emissivity region made by normal quarks. We present cooling curves obtained from the evolutionary calculations of compact stars: while heavier stars cool slowly, and lighter ones indicate the opposite tendency without considering nucleon superfluidity. Furthermore, we show that our scenario is consistent with the recent observations of the effective temperature of Cas A during the last 10 years, including nucleon superfluidity.« less
  • We suggest a scenario where the three light quark flavors are sequentially deconfined under increasing pressure in cold asymmetric nuclear matter as, e.g., in neutron stars. The basis for our analysis is a chiral quark matter model of Nambu-Jona-Lasinio (NJL) type with diquark pairing in the spin-1 single flavor (CSL), spin-0 two flavor (2SC) and three flavor (CFL) channels. We find that nucleon dissociation sets in at about the saturation density, n{sub 0}, when the down-quark Fermi sea is populated (d-quark dripline) due to the flavor asymmetry induced by {beta}-equilibrium and charge neutrality. At about 3n{sub 0} u-quarks appear andmore » a two-flavor color superconducting (2SC) phase is formed. The s-quark Fermi sea is populated only at still higher baryon density, when the quark chemical potential is of the order of the dynamically generated strange quark mass. We construct two different hybrid equations of state (EoS) using the Dirac-Brueckner Hartree-Fock (DBHF) approach and the EoS by Shen et al. in the nuclear matter sector. The corresponding hybrid star sequences have maximum masses of, respectively, 2.1 and 2.0 M{sub {center_dot}}. Two- and three-flavor quark-matter phases exist only in gravitationally unstable hybrid star solutions in the DBHF case, while the Shen-based EoS produce stable configurations with a 2SC phase component in the core of massive stars. Nucleon dissociation due to d-quark drip at the crust-core boundary fulfills basic criteria for a deep crustal heating process which is required to explain superbusts as well as cooling of X-ray transients.« less
  • We construct an equation of state including the hadron-quark phase transition. The mixed phase is obtained by the Gibbs conditions for finite temperature. We adopt the equation of state based on the relativistic mean field theory for the hadronic phase, taking into account pions. As for the quark phase, the MIT bag model of the deconfined 3-flavor strange quark matter is used. As a result, our equation of state is thermodynamically stable and qualitatively exhibits the desired properties of hadron-quark mixed matter, such as the temperature dependence of the transition density. The pions raise the transition density because they makemore » the equation of state softer. Using the equation of state constructed here, we study its astrophysical implications. The maximum mass of compact stars is investigated, and our equation of state is consistent with recent observations. We also compute the collapse of a massive star with 100 solar masses (M{sub {center_dot}}) using our equation of state and find that the interval time from the bounce to the black hole formation becomes shorter for the model with pions and quarks. The pions and quarks affect the total energy of the emitted neutrinos because the duration time of the neutrino emission becomes shorter. The neutrino luminosity rises under the effect of pions since the density of the proto-neutron star becomes high.« less
  • We discuss an idea for how accreting millisecond pulsars could contribute to the understanding of the QCD phase transition in the high-density nuclear matter equation of state (EoS). It is based on two ingredients, the first one being a ''phase diagram'' of rapidly rotating compact star configurations in the plane of spin frequency and mass, determined with state-of-the-art hybrid equations of state, allowing for a transition to color superconducting quark matter. The second is the study of spin-up and accretion evolution in this phase diagram. We show that the quark matter phase transition leads to a characteristic line in themore » {omega}-M plane, the phase border between neutron stars and hybrid stars with a quark matter core. Along this line a drop in the pulsar's moment of inertia entails a waiting point phenomenon in the accreting millisecond pulsar (AMXP) evolution: most of these objects should therefore be found along the phase border in the {omega}-M plane, which may be viewed as the AMXP analog of the main sequence in the Hertzsprung-Russell diagram for normal stars. In order to prove the existence of a high-density phase transition in the cores of compact stars we need population statistics for AMXPs with sufficiently accurate determination of their masses, spin frequencies and magnetic fields.« less