skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structural characterization of the Man5 glycoform of human IgG3 Fc

Abstract

Immunoglobulin G (IgG) consists of four subclasses in humans: IgG1, IgG2, IgG3 and IgG4, which are highly conserved but have unique differences that result in subclass-specific effector functions. Though IgG1 is the most extensively studied IgG subclass, study of other subclasses is important to understand overall immune function and for development of new therapeutics. When compared to IgG1, IgG3 exhibits a similar binding profile to Fcγ receptors and stronger activation of complement. All IgG subclasses are glycosylated at N297, which is required for Fcγ receptor and C1q complement binding as well as maintaining optimal Fc conformation. We have determined the crystal structure of homogenously glycosylated human IgG3 Fc with a GlcNAc2Man5 (Man5) high mannose glycoform at 1.8 Å resolution and compared its structural features with published structures from the other IgG subclasses. Although the overall structure of IgG3 Fc is similar to that of other subclasses, some structural perturbations based on sequence differences were revealed. For instance, the presence of R435 in IgG3 (and H435 in the other IgG subclasses) has been implicated to result in IgG3-specific properties related to binding to protein A, protein G and the neonatal Fc receptor (FcRn). The IgG3 Fc structure helps to explain somemore » of these differences. Additionally, protein-glycan contacts observed in the crystal structure appear to correlate with IgG3 affinity for Fcγ receptors as shown by binding studies with IgG3 Fc glycoforms. Finally, this IgG3 Fc structure provides a template for further studies aimed at engineering the Fc for specific gain of function.« less

Authors:
; ; ; ;
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States). Advanced Photon Source (APS)
Sponsoring Org.:
National Institutes of Health (NIH)
OSTI Identifier:
1400303
Resource Type:
Journal Article
Resource Relation:
Journal Name: Molecular Immunology; Journal Volume: 92; Journal Issue: C
Country of Publication:
United States
Language:
ENGLISH
Subject:
60 APPLIED LIFE SCIENCES; 59 BASIC BIOLOGICAL SCIENCES

Citation Formats

Shah, Ishan S., Lovell, Scott, Mehzabeen, Nurjahan, Battaile, Kevin P., and Tolbert, Thomas J. Structural characterization of the Man5 glycoform of human IgG3 Fc. United States: N. p., 2017. Web. doi:10.1016/j.molimm.2017.10.001.
Shah, Ishan S., Lovell, Scott, Mehzabeen, Nurjahan, Battaile, Kevin P., & Tolbert, Thomas J. Structural characterization of the Man5 glycoform of human IgG3 Fc. United States. doi:10.1016/j.molimm.2017.10.001.
Shah, Ishan S., Lovell, Scott, Mehzabeen, Nurjahan, Battaile, Kevin P., and Tolbert, Thomas J. 2017. "Structural characterization of the Man5 glycoform of human IgG3 Fc". United States. doi:10.1016/j.molimm.2017.10.001.
@article{osti_1400303,
title = {Structural characterization of the Man5 glycoform of human IgG3 Fc},
author = {Shah, Ishan S. and Lovell, Scott and Mehzabeen, Nurjahan and Battaile, Kevin P. and Tolbert, Thomas J.},
abstractNote = {Immunoglobulin G (IgG) consists of four subclasses in humans: IgG1, IgG2, IgG3 and IgG4, which are highly conserved but have unique differences that result in subclass-specific effector functions. Though IgG1 is the most extensively studied IgG subclass, study of other subclasses is important to understand overall immune function and for development of new therapeutics. When compared to IgG1, IgG3 exhibits a similar binding profile to Fcγ receptors and stronger activation of complement. All IgG subclasses are glycosylated at N297, which is required for Fcγ receptor and C1q complement binding as well as maintaining optimal Fc conformation. We have determined the crystal structure of homogenously glycosylated human IgG3 Fc with a GlcNAc2Man5 (Man5) high mannose glycoform at 1.8 Å resolution and compared its structural features with published structures from the other IgG subclasses. Although the overall structure of IgG3 Fc is similar to that of other subclasses, some structural perturbations based on sequence differences were revealed. For instance, the presence of R435 in IgG3 (and H435 in the other IgG subclasses) has been implicated to result in IgG3-specific properties related to binding to protein A, protein G and the neonatal Fc receptor (FcRn). The IgG3 Fc structure helps to explain some of these differences. Additionally, protein-glycan contacts observed in the crystal structure appear to correlate with IgG3 affinity for Fcγ receptors as shown by binding studies with IgG3 Fc glycoforms. Finally, this IgG3 Fc structure provides a template for further studies aimed at engineering the Fc for specific gain of function.},
doi = {10.1016/j.molimm.2017.10.001},
journal = {Molecular Immunology},
number = C,
volume = 92,
place = {United States},
year = 2017,
month =
}
  • Three mouse monoclonal IgG3 antibodies, 2B2, IF4, and MG-21, recognize a G/sub D3/ ganglioside antigen that is expressed at the cell surface of most human melanomas. All three antibodies mediate antibody-dependent cellular cytotoxicity (ADCC) in vitro when tested with human lymphocytes or effector cells in a 2-hr or 4-hr /sup 51/Cr-release test, and one antibody, MG-21, also gives strong complement-dependent cytotoxicity with human serum. Antibody 2B2, which gives ADDC also in the presence of mouse lymphocytes, inhibited the outgrowth of a human melanoma in nude mice, but antibody IF4, which showed no ADCC with mouse lymphocyte effectors, did not.
  • Formulating appropriate storage conditions for biopharmaceutical proteins is essential for ensuring their stability and thereby their purity, potency, and safety over their shelf-life. Using a model murine IgG3 produced in a bioreactor system, multiple formulation compositions were systematically explored in a DoE design to optimize the stability of a challenging antibody formulation worst case. The stability of the antibody in each buffer formulation was assessed by UV/VIS absorbance at 280 nm and 410 nm and size exclusion high performance liquid chromatography (SEC) to determine overall solubility, opalescence, and aggregate formation, respectively. Upon preliminary testing, acetate was eliminated as a potentialmore » storage buffer due to significant visible precipitate formation. An additional 2 4full factorial DoE was performed that combined the stabilizing effect of arginine with the buffering capacity of histidine. From this final DoE, an optimized formulation of 200 mM arginine, 50 mM histidine, and 100 mM NaCl at a pH of 6.5 was identified to substantially improve stability under long-term storage conditions and after multiple freeze/thaw cycles. Therefore, our data highlights the power of DoE based formulation screening approaches even for challenging monoclonal antibody molecules.« less
  • O{sup 6}-Methylguanine-DNA methyltransferase a unique DNA repair protein present in most organisms, removes the carcinogenic and mutagenic adduct O{sup 6}-alkylguanine from DNA by stoichiometrically accepting the alkyl group on a cysteine residue in a suicide reaction. The mammalian protein is highly regulated in both somatic and germ-like cells. In addition, the toxicity of certain alkylating drugs in tumor and normal cells is inversely related to the levels of this protein. The cDNA of the human gene, henceforth named MGMT, has been cloned in an expression vector on the basis of its rescue of a methyltransferase-deficient (ada{sup {minus}}) Escherichia coli host.more » A 22-kDa active methyltransferase encoded entirely by the cDNA contains an amino acid sequence of 61 residues that bears 60-65% similarity with segments of E. coli methyltransferase which encompass the alkyl-acceptor residues. The human cDNA has no sequence similarity with the ada and ogt genes, due in part to differences in codon usage, and shows no detectable homology with E. coli genomic DNA. However, it hybridizes with distinct restriction fragments of human, mouse, and rat DNAs. The lack of methyltransferase observed in many human cell lines is due to the absence of the MGNT gene or to lack of synthesis and/or stability of its 0.95-kilobase poly(A){sup +} RNA transcript.« less
  • The kringle 2 domain of human tissue-type plasminogen activator (t-PA) has been characterized via {sup 1}H NMR spectroscopy at 300 and 620 MHz. The experiments were performed on the isolated domain obtained by expression of the 174-263 portion of t-PA in Escherichia coli. The spectrum of t-Pa kringle 2 is characteristic of a globular structure and shows overall similarity to that of the plasminogen (PGN) kringle 4. Spectral comparison with human and bovine PGN kringle 4 identified side-chain resonances from Leu{sup 46}, which afford a fingerprint of kringle folding, and from most of the aromatic ring spin systems. Ligand-binding studiesmore » confirm that t-PA kringle 2 binds L-lysine with an association constant K{sub a} {approximately} 11.9 mM{sup {minus}1}. The data indicate that homologous or conserved residues relative to those that compose the lysine-binding sites of PGN kringles 1 and 4 are involved in the binding of L-lysine to t-PA kringle 2. These include Tyr{sup 36} and, within the kringle inner loop, Trp{sup 62}, His{sup 64}, Trp{sup 72}, and Tyr{sup 74}. Several labile NH protons of t-PA kringle 2 exhibit retarded H-exchange kinetics, requiring more than a week in {sup 2}H{sub 2}O for full deuteration in the presence of L-lysine at 37{degree}C. This reveals that kringle 2 is endowed with a compact, dynamically stable conformation. Proton Overhauser experiments in {sup 1}H{sub 2}O, centered on well-resolved NH resonances between 9.8 and 12 ppm, identify signals arising from the His{sup 48a} imidazole NH3 proton and the three Trp indole NH1 protons. Overall, the data indicate a highly structured conformation for the recombinant t-PA kringle 2 that is closely related to that of the previously investigated PGN kringles 1, 4, and 5.« less
  • We report the molecular cloning of the human gene (symbol LRPAP1) coding for the {alpha}{sub 2}-macroglobulin receptor-associated protein (A2MRAP), as well as the gene coding for the 44-kDa heparin-binding protein (HBP-44), its murine counterpart. For both, genomic cosmid clones were isolated, and for the human gene a bacteriophage P1 clone containing the entire A2MRAP gene was also retrieved. The genes were characterized after subcloning: in both species, the known coding part of the cDNA is encoded by eight exons, and the position of the boundaries of the exons was conserved. The human LRPAP1 locus was assigned to chromosome 4 bymore » PCR of human-hamster hybrid cell lines and by fluorescence in situ hybridization to band 4p16.3. This maps closely to the variable constitutional deletions of the short arm of chromosome 4, observed cytogenetically in patients with the Wolf-Hirschhorn syndrome. Metaphase spreads of two such patients were analyzed by fluorescence in situ hybridization with an LRPAP1 genomic probe. The first patient, with karyotype 46,XY,del4(p14-p16.1), had retained both copies of the LRPAP1 gene. In contrast, the other patient, with karyotype 46,XY,del4(p15.3-pter), displayed no signal for LRPAP1 on the deleted chromosome. 44 refs., 3 figs., 1 tab.« less