skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Neutron cross section sensitivity and uncertainty analysis of candidate accident tolerant fuel concepts

Abstract

The aftermath of the Tōhoku earthquake and the Fukushima accident has led to a global push to improve the safety of existing light water reactors. A key component of this initiative is the development of nuclear fuel and cladding materials with potentially enhanced accident tolerance, also known as accident-tolerant fuels (ATF). These materials are intended to improve core fuel and cladding integrity under beyond design basis accident conditions while maintaining or enhancing reactor performance and safety characteristics during normal operation. To complement research that has already been carried out to characterize ATF neutronics, the present study provides an initial investigation of the sensitivity and uncertainty of ATF systems responses to nuclear cross section data. ATF concepts incorporate novel materials, including SiC and FeCrAl cladding and high density uranium silicide composite fuels, in turn introducing new cross section sensitivities and uncertainties which may behave differently from traditional fuel and cladding materials. In this paper, we conducted sensitivity and uncertainty analysis using the TSUNAMI-2D sequence of SCALE with infinite lattice models of ATF assemblies. Of all the ATF materials considered, it is found that radiative capture in 56Fe in FeCrAl cladding is the most significant contributor to eigenvalue uncertainty. 56Fe yields significantmore » potential eigenvalue uncertainty associated with its radiative capture cross section; this is by far the largest ATF-specific uncertainty found in these cases, exceeding even those of uranium. We found that while significant new sensitivities indeed arise, the general sensitivity behavior of ATF assemblies does not markedly differ from traditional UO2/zirconium-based fuel/cladding systems, especially with regard to uncertainties associated with uranium. We assessed the similarity of the IPEN/MB-01 reactor benchmark model to application models with FeCrAl cladding. We used TSUNAMI-IP to calculate similarity indices of the application model and IPEN/MB-01 reactor benchmark model. This benchmark was selected for its use of SS304 as a cladding and structural material, with significant 56Fe content. The similarity indices suggest that while many differences in reactor physics arise from differences in design, sensitivity to and behavior of 56Fe absorption is comparable between systems, thus indicating the potential for this benchmark to reduce uncertainties in 56Fe radiative capture cross sections.« less

Authors:
 [1]; ORCiD logo [2]
  1. Pennsylvania State University, University Park
  2. ORNL
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1400210
DOE Contract Number:  
AC05-00OR22725
Resource Type:
Journal Article
Resource Relation:
Journal Name: Annals of Nuclear Energy (Oxford); Journal Volume: 110; Journal Issue: C
Country of Publication:
United States
Language:
English
Subject:
11 NUCLEAR FUEL CYCLE AND FUEL MATERIALS

Citation Formats

Brown, Nicholas, and Burns, Joseph R. Neutron cross section sensitivity and uncertainty analysis of candidate accident tolerant fuel concepts. United States: N. p., 2017. Web. doi:10.1016/j.anucene.2017.08.004.
Brown, Nicholas, & Burns, Joseph R. Neutron cross section sensitivity and uncertainty analysis of candidate accident tolerant fuel concepts. United States. doi:10.1016/j.anucene.2017.08.004.
Brown, Nicholas, and Burns, Joseph R. Fri . "Neutron cross section sensitivity and uncertainty analysis of candidate accident tolerant fuel concepts". United States. doi:10.1016/j.anucene.2017.08.004.
@article{osti_1400210,
title = {Neutron cross section sensitivity and uncertainty analysis of candidate accident tolerant fuel concepts},
author = {Brown, Nicholas and Burns, Joseph R.},
abstractNote = {The aftermath of the Tōhoku earthquake and the Fukushima accident has led to a global push to improve the safety of existing light water reactors. A key component of this initiative is the development of nuclear fuel and cladding materials with potentially enhanced accident tolerance, also known as accident-tolerant fuels (ATF). These materials are intended to improve core fuel and cladding integrity under beyond design basis accident conditions while maintaining or enhancing reactor performance and safety characteristics during normal operation. To complement research that has already been carried out to characterize ATF neutronics, the present study provides an initial investigation of the sensitivity and uncertainty of ATF systems responses to nuclear cross section data. ATF concepts incorporate novel materials, including SiC and FeCrAl cladding and high density uranium silicide composite fuels, in turn introducing new cross section sensitivities and uncertainties which may behave differently from traditional fuel and cladding materials. In this paper, we conducted sensitivity and uncertainty analysis using the TSUNAMI-2D sequence of SCALE with infinite lattice models of ATF assemblies. Of all the ATF materials considered, it is found that radiative capture in 56Fe in FeCrAl cladding is the most significant contributor to eigenvalue uncertainty. 56Fe yields significant potential eigenvalue uncertainty associated with its radiative capture cross section; this is by far the largest ATF-specific uncertainty found in these cases, exceeding even those of uranium. We found that while significant new sensitivities indeed arise, the general sensitivity behavior of ATF assemblies does not markedly differ from traditional UO2/zirconium-based fuel/cladding systems, especially with regard to uncertainties associated with uranium. We assessed the similarity of the IPEN/MB-01 reactor benchmark model to application models with FeCrAl cladding. We used TSUNAMI-IP to calculate similarity indices of the application model and IPEN/MB-01 reactor benchmark model. This benchmark was selected for its use of SS304 as a cladding and structural material, with significant 56Fe content. The similarity indices suggest that while many differences in reactor physics arise from differences in design, sensitivity to and behavior of 56Fe absorption is comparable between systems, thus indicating the potential for this benchmark to reduce uncertainties in 56Fe radiative capture cross sections.},
doi = {10.1016/j.anucene.2017.08.004},
journal = {Annals of Nuclear Energy (Oxford)},
number = C,
volume = 110,
place = {United States},
year = {Fri Dec 01 00:00:00 EST 2017},
month = {Fri Dec 01 00:00:00 EST 2017}
}