skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Capturing and immobilizing radioactive nuclei using organic materials.

Abstract

Abstract not provided.

Authors:
; ;
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE Office of Nuclear Energy (NE)
OSTI Identifier:
1400037
Report Number(s):
SAND2016-10235PE
648219
DOE Contract Number:
AC04-94AL85000
Resource Type:
Conference
Resource Relation:
Conference: Proposed for presentation at the New Mexico Society of Professional Engineers October Luncheon held October 11, 2016 in Albuquerque, New Mexico.
Country of Publication:
United States
Language:
English

Citation Formats

Kruichak, Jessica Nicole, Wang, Yifeng, and Mills, Melissa Marie. Capturing and immobilizing radioactive nuclei using organic materials.. United States: N. p., 2016. Web.
Kruichak, Jessica Nicole, Wang, Yifeng, & Mills, Melissa Marie. Capturing and immobilizing radioactive nuclei using organic materials.. United States.
Kruichak, Jessica Nicole, Wang, Yifeng, and Mills, Melissa Marie. 2016. "Capturing and immobilizing radioactive nuclei using organic materials.". United States. doi:. https://www.osti.gov/servlets/purl/1400037.
@article{osti_1400037,
title = {Capturing and immobilizing radioactive nuclei using organic materials.},
author = {Kruichak, Jessica Nicole and Wang, Yifeng and Mills, Melissa Marie},
abstractNote = {Abstract not provided.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2016,
month =
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • Methods of capturing and immobilizing radioactive nuclei with metal fluorite-based inorganic materials are described. For example, a method of capturing and immobilizing radioactive nuclei includes flowing a gas stream through an exhaust apparatus. The exhaust apparatus includes a metal fluorite-based inorganic material. The gas stream includes a radioactive species. The radioactive species is removed from the gas stream by adsorbing the radioactive species to the metal fluorite-based inorganic material of the exhaust apparatus.
  • Methods of capturing and immobilizing radioactive nuclei with metal fluorite-based inorganic materials are described. For example, a method of capturing and immobilizing radioactive nuclei includes flowing a gas stream through an exhaust apparatus. The exhaust apparatus includes a metal fluorite-based inorganic material. The gas stream includes a radioactive species. The radioactive species is removed from the gas stream by adsorbing the radioactive species to the metal fluorite-based inorganic material of the exhaust apparatus.
  • From 1951 to 1966 over 1 [times] 10[sup 6] Ci of Cs-137, Sr-90, and other radioisotopes in liquid wastes were disposed of in shallow seepage pits at ORNL. In situ methods to stabilize these sites are being investigated because of radiation exposure risks to personnel during excavation and removal activities. A field test at ORNL of In Situ Vitrification (ISV) was performed to evaluate its ability to resistance heating through graphite electrodes to melt contaminated soils in place. The resulting small lava lake cools and solidifies to a rock consisting of glassy and crystalline material. Volatile products released from themore » surface of the melt are collected and treated. The Sr-90 was incorporated into mineral phases and residual glass that form upon solidification. The Cs-137, however, is incompatible with the mineral structures and is concentrated into the small amount of residual glass that is trapped in the interstices between mineral grains. Leach tests were performed on samples of sludge, sludge + soil, crushed ISV rock, crushed ISV rock + soil, and low surface area fragments of ISV rock. First, sequential extractions with 0.1 N CaCl[sub 2] were used. Then, sequential treatments with 0.1 N HCl were used. Approximately 10% of the Sr-90 was released from the sludge, with or without soil, after CaCl[sub 2] was applied. Subsequent treatment with HCl released essentially all the Sr-90. The Sr-90 in the crushed ISV rock was resistant to cation exchange, with only 0.4% leached after treatment with CaCl[sub 2]. Treatment with HCl released only 4% of the total Sr-90 present in the crushed ISV rock. The low surface area fragments, more representative of expected field conditions, released 10 [times] less of the Sr-90 than the crushed ISV rock samples. The Cs-137 was not significantly leached from any of the samples of sludge or ISV rock.« less
  • A small-scale (3-kg), joule-heated, continuous melter has been designed to study vitrification of Savannah River Plant radioactive waste. The first melter built has been in nonradioactive service for nearly three years. This melter had Inconel 690 electrodes and uses Monofrax K-3 for the contact refractory. Several problems seem in this melter have had an impact on the design of a full-scale system. Problems include uncontrolled electric currents passing through the throat, and formation of a slag layer at the bottom of the melter. The performance of a similar melter in a low-maintenance, radioactive environment is also described. Problems such asmore » halide refluxing, and hot streaking, first observed in this melter, are also discussed.« less
  • Radioactive and Hazardous Mixed Wastes have accumulated at the Department of Energy (DOE) Hanford Site in south-central Washington State. Ongoing operations and planned facilities at Hanford will also contribute to this waste stream. To meet the Resource Conservation and Recovery Act (RCRA) Land Disposal Restrictions most of this waste will need to be treated to permit disposal. In general this treatment will need to include stabilization/solidification either as a sole method or as part of a treatment train. A planned DOE facility, the Waste Receiving and Processing (WRAP) Module 2A, is scoped to provide this required treatment for containerized contact-handledmore » (CH), mixed low-level waste (MLLW) at Hanford. An engineering development program has been conducted by Westinghouse Hanford Company (WHC) to select the best system for utilizing a cement based process in WRAP Module 2A. Three mixing processes were developed for analysis and testing; in-drum mixing, continuous mixing, and batch mixing. Some full scale tests were conducted and 55 gallon drums of solidified product were produced. These drums were core sampled and examined to evaluate mixing effectiveness. Total solids loading and the order of addition of waste and binder constituents were also varied. The highest confidence approach to meet the WRAP Module 2A waste immobilization system needs appears to be the out-of-drum batch mixing concept. This system is believed to offer the most flexibility and efficiency, given the highly variable and troublesome waste streams feeding the facility.« less