skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mercury Remediation Technology Development for Lower East Fork Poplar Creek - FY 2016 Progress Report

Abstract

Mercury remediation is a high priority for the US Department of Energy (DOE) Oak Ridge Office of Environmental Management (OREM), especially at and near the Y-12 National Security Complex (Y-12) where historical mercury use has resulted in contaminated buildings, soils, and downstream surface waters. To address mercury contamination of East Fork Poplar Creek (EFPC), the DOE has adopted a phased, adaptive management approach to remediation, which includes mercury treatment actions at Y-12 in the short-term and research and technology development (TD) to evaluate longer-term solutions in the downstream environment (US Department of Energy 2014).

Authors:
 [1];  [2];  [2];  [2];  [2];  [2];  [2];  [2];  [2];  [2];  [2];  [2];  [2];  [2];  [2];  [2];  [2]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  2. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). BioEnergy Science Center (BESC)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1399969
Report Number(s):
ORNL/TM-2017/366
100658
DOE Contract Number:
AC05-00OR22725
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Dickson, Johnbull O., Smith, John G., Mehlhorn, Tonia L., Peterson, Mark J., Lowe, Kenneth Alan, Watson, David B., Brooks, Scott C., Morris, Jesse G., Mayes, Melanie, Johs, Alexander, Mathews, Teresa J., McManamay, Ryan A., DeRolph, Christopher R., Poteat, Monica D., Olsen, Todd A., Eller, Virginia A., and Gonez Rodriguez, Leroy. Mercury Remediation Technology Development for Lower East Fork Poplar Creek - FY 2016 Progress Report. United States: N. p., 2017. Web. doi:10.2172/1399969.
Dickson, Johnbull O., Smith, John G., Mehlhorn, Tonia L., Peterson, Mark J., Lowe, Kenneth Alan, Watson, David B., Brooks, Scott C., Morris, Jesse G., Mayes, Melanie, Johs, Alexander, Mathews, Teresa J., McManamay, Ryan A., DeRolph, Christopher R., Poteat, Monica D., Olsen, Todd A., Eller, Virginia A., & Gonez Rodriguez, Leroy. Mercury Remediation Technology Development for Lower East Fork Poplar Creek - FY 2016 Progress Report. United States. doi:10.2172/1399969.
Dickson, Johnbull O., Smith, John G., Mehlhorn, Tonia L., Peterson, Mark J., Lowe, Kenneth Alan, Watson, David B., Brooks, Scott C., Morris, Jesse G., Mayes, Melanie, Johs, Alexander, Mathews, Teresa J., McManamay, Ryan A., DeRolph, Christopher R., Poteat, Monica D., Olsen, Todd A., Eller, Virginia A., and Gonez Rodriguez, Leroy. Sat . "Mercury Remediation Technology Development for Lower East Fork Poplar Creek - FY 2016 Progress Report". United States. doi:10.2172/1399969. https://www.osti.gov/servlets/purl/1399969.
@article{osti_1399969,
title = {Mercury Remediation Technology Development for Lower East Fork Poplar Creek - FY 2016 Progress Report},
author = {Dickson, Johnbull O. and Smith, John G. and Mehlhorn, Tonia L. and Peterson, Mark J. and Lowe, Kenneth Alan and Watson, David B. and Brooks, Scott C. and Morris, Jesse G. and Mayes, Melanie and Johs, Alexander and Mathews, Teresa J. and McManamay, Ryan A. and DeRolph, Christopher R. and Poteat, Monica D. and Olsen, Todd A. and Eller, Virginia A. and Gonez Rodriguez, Leroy},
abstractNote = {Mercury remediation is a high priority for the US Department of Energy (DOE) Oak Ridge Office of Environmental Management (OREM), especially at and near the Y-12 National Security Complex (Y-12) where historical mercury use has resulted in contaminated buildings, soils, and downstream surface waters. To address mercury contamination of East Fork Poplar Creek (EFPC), the DOE has adopted a phased, adaptive management approach to remediation, which includes mercury treatment actions at Y-12 in the short-term and research and technology development (TD) to evaluate longer-term solutions in the downstream environment (US Department of Energy 2014).},
doi = {10.2172/1399969},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Sat Jul 01 00:00:00 EDT 2017},
month = {Sat Jul 01 00:00:00 EDT 2017}
}

Technical Report:

Save / Share:
  • Mercury remediation is a high priority for the US Department of Energy (DOE) Oak Ridge Office of Environmental Management (OREM) because of large historical losses of mercury within buildings and to soils and surface waters at the Y-12 National Security Complex (Y-12). Because of the extent of mercury losses and the complexities of mercury transport and fate in the downstream environment, the success of conventional options for mercury remediation in lower East Fork Poplar Creek (EFPC) is uncertain. A phased, adaptive management approach to remediation of surface water includes mercury treatment actions at Y-12 in the short-term and research andmore » technology development (TD) to evaluate longer-term solutions in the downstream environment (US Department of Energy 2014b).« less
  • During the Phase I remediation of Lower East Fork Poplar Creek (LEFPC), the mercury concentration in air was monitored continuously at a nearby off-site location. The purpose of the monitoring was to ensure that the remediation did not adversely affect the off-site concentration of mercury in air. The concentrations of mercury in air did increase during the remediation. However, based on the results of a previous study, this increase was caused by the increase in sunlight intensity and temperature during remediation, which occurred in the summer months. In any case, all concentrations measured before, during, and after remediation were wellmore » below the standard of 300 ng/m{sup 3} recommended for continuous exposure to mercury in air.« less
  • A retrospective study of the remediation of Lower East Fork Poplar Creek (LEFPC) in Oak Ridge, Tennessee was completed. The study was conducted by reviewing the public Comprehensive Environmental Response, Compensation, and Liability Act record documents associated with the remediation of LEFPC and through discussions with the project staff involved or familiar with the project. The remediation took place in two phases. The first phase involved the excavation of about 5,560 yd{sup 3} of soil at the National Oceanic and Atmospheric Administration (NOAA) locations in 1996. The second phase involved the excavation of 39,200 yd{sup 3} at another NOAA locationmore » and at the Bruner location in 1997. For the entire project (remedial investigation through cleanup), a total of 7,708 samples (1 sample for each 5.8 yd{sup 3} of soil remediated) were analyzed for mercury. The project obtained special regulatory approval to use two methods for the determination of mercury in soils that are not part of the Resource Conservation and Recovery Act SW-846 methods manual. The mercury analysis cost was $678,000, which represents 9.6% of the cleanup cost. During the cleanup phase of the project, an on-site laboratory was used. The estimated cost savings that the on-site laboratory provided fall into two categories: direct reduction of costs associated with chemical analysis and sample shipment totaling approximately $38,000, which represents a 5.3% savings relative to the estimated cost of using an off-site laboratory, and savings in the amount of $890,000 (12.5% of the $7.1 M cleanup cost), associated with expediting execution of the cleanup work by providing rapid (< 3 hours) sample result turnaround time. The manner in which the analytical services were procured for the LEFPC project suggest that the development of new chemical analysis technology must address deployment, performance, regulatory, robustness, reliability, and business appropriateness factors if the technology is to be used in environmental remediation.« less
  • Thermal desorption is an innovative technology that has seen significant growth in applications to organically contaminated soils and sludges for the remediation of hazardous, radioactive and mixed waste sites. This paper will present the results of a bench and pilot-scale demonstration of this technology for the removal of mercury from the Lower East Fork Poplar Creek floodplain soil. Results demonstrate that the mercury in this soil can be successfully removed to the target treatment levels of 10 milligrams per kilogram (mg/kg) and that all process residuals could be rendered RCRA-nonhazardous as defined by the Resource Conservation and Recovery Act. Samplingmore » and analyses of the desorber off-gas before and after the air pollution control system demonstrated effective collection of mercury and organic constituents. Pilot-scale testing was also conducted to verify requirements for material handling of soil into and out of the process. This paper will also present a conceptual design and preliminary costs of a full-scale system, including feed preparation, thermal treatment, and residuals handling for the soil.« less
  • This report summarizes a 3-year research project undertaken to better understand the nature and magnitude of mercury (Hg) fluxes in East Fork Poplar Creek (EFPC). This project addresses the requirements of Action Plan 1 in the 2011 Oak Ridge Reservation-wide Comprehensive Environmental Response, Compensation, and Liability Act Five Year Review (FYR). The Action Plan is designed to address a twofold 2011 FYR issue: (1) new information suggests mobilization of mercury from the upper and lower EFPC streambeds and stream banks is the primary source of mercury export during high-flow conditions, and (2) the current Record of Decision did not addressmore » the entire hydrologic system and creek bank or creek bed sediments. To obtain a more robust watershed-scale understanding of mercury sources and processes in lower EFPC (LEFPC), new field and laboratory studies were coupled with existing data from multiple US Department of Energy programs to develop a dynamic watershed and bioaccumulation model. LEFPC field studies for the project focused primarily on quantification of streambank erosion and an evaluation of mercury dynamics in shallow groundwater adjacent to LEFPC and potential connection to the surface water. The approach to the stream bank study was innovative in using imagery from kayak floats’ surveys from the headwaters to the mouth of EFPC to estimate erosion, coupled with detailed bank soil mercury analyses. The goal of new field assessments and modeling was to generate a more holistic and quantitative understanding of the watershed and the sources, flux, concentration, transformation, and bioaccumulation of inorganic mercury (IHg) and methylmercury (MeHg). Model development used a hybrid approach that dynamically linked a spreadsheet-based physical and chemical watershed model to a systems dynamics, mercury bioaccumulation model for key fish species. The watershed model tracks total Hg and MeHg fluxes and concentrations by examining upstream inputs, floodplain runoff, floodplain leaching, bank soil erosion, and periphyton matrix dynamics. The bioaccumulation model tracks the feeding, growth, and mercury assimilation of representative individual fish through their typical life span using key inputs of fish size, water temperature, and diet. The LEFPC watershed was divided into five modeling reaches, and fluxes and concentrations are assessed at this spatial scale. Following are the key findings of the field and laboratory studies and the watershed and bioaccumulation modeling: • The greatest flux of total mercury (HgT) in LEFPC is related to stormflow transport of Hg-contaminated solids entering the creek because of bank erosion in the upper reaches of the creek. • The second greatest flux originates from upper EFPC (Station 17 representing the exit stream sampling point near the boundary of the Y-12 Complex), and appears to control base flow fluxes. • The observed increase in MeHg concentration and flux from upstream to downstream is related primarily to instream methylation by periphyton and other biological activity. • A meaningful substantial reduction of the HgT flux in LEFPC would require addressing the flux of HgT originating from bank erosion and from Station 17. • Actions to reduce LEFPC floodplain leaching and runoff would not produce much of an impact on HgT or MeHg concentrations or fluxes unless other major sources are eliminated first. This project addresses the Action Plan goal to evaluate the role of LEFPC bank soil sources and to consider the entire EFPC hydrologic system. Model conclusions are dependent on the data available at the time of this assessment. However, a robust understanding and quantification for some mercury-related parameters and relationships is still lacking; there is a continued need for field data collection and modeling improvements. Model predictions should be viewed cautiously, with comparisons of the magnitude of predictions between scenarios being more valid than absolute predictions of concentrations or fluxes. With continued updates and refinement, the watershed-scale model can be a useful, valuable tool for future EFPC research prioritization, technology development, and remedial decision-making.« less