skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mechanically stiff, electrically conductive composites of polymers and carbon nanotubes

Abstract

Using SWNT-CA as scaffolds to fabricate stiff, highly conductive polymer (PDMS) composites. The SWNT-CA is immersing in a polymer resin to produce a SWNT-CA infiltrated with a polymer resin. The SWNT-CA infiltrated with a polymer resin is cured to produce the stiff and electrically conductive composite of carbon nanotube aerogel and polymer.

Inventors:
; ; ; ; ;
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1399865
Patent Number(s):
9,793,026
Application Number:
14/688,909
Assignee:
Lawrence Livermore National Security, LLC LLNL
DOE Contract Number:
AC52-07NA27344
Resource Type:
Patent
Resource Relation:
Patent File Date: 2015 Apr 16
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Worsley, Marcus A., Kucheyev, Sergei O., Baumann, Theodore F., Kuntz, Joshua D., Satcher, Jr., Joe H., and Hamza, Alex V.. Mechanically stiff, electrically conductive composites of polymers and carbon nanotubes. United States: N. p., 2017. Web.
Worsley, Marcus A., Kucheyev, Sergei O., Baumann, Theodore F., Kuntz, Joshua D., Satcher, Jr., Joe H., & Hamza, Alex V.. Mechanically stiff, electrically conductive composites of polymers and carbon nanotubes. United States.
Worsley, Marcus A., Kucheyev, Sergei O., Baumann, Theodore F., Kuntz, Joshua D., Satcher, Jr., Joe H., and Hamza, Alex V.. 2017. "Mechanically stiff, electrically conductive composites of polymers and carbon nanotubes". United States. doi:. https://www.osti.gov/servlets/purl/1399865.
@article{osti_1399865,
title = {Mechanically stiff, electrically conductive composites of polymers and carbon nanotubes},
author = {Worsley, Marcus A. and Kucheyev, Sergei O. and Baumann, Theodore F. and Kuntz, Joshua D. and Satcher, Jr., Joe H. and Hamza, Alex V.},
abstractNote = {Using SWNT-CA as scaffolds to fabricate stiff, highly conductive polymer (PDMS) composites. The SWNT-CA is immersing in a polymer resin to produce a SWNT-CA infiltrated with a polymer resin. The SWNT-CA infiltrated with a polymer resin is cured to produce the stiff and electrically conductive composite of carbon nanotube aerogel and polymer.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2017,
month =
}

Patent:

Save / Share:
  • Using SWNT-CA as scaffolds to fabricate stiff, highly conductive polymer (PDMS) composites. The SWNT-CA is immersing in a polymer resin to produce a SWNT-CA infiltrated with a polymer resin. The SWNT-CA infiltrated with a polymer resin is cured to produce the stiff and electrically conductive composite of carbon nanotube aerogel and polymer.
  • A method of making a mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogel, including the steps of dispersing nanotubes in an aqueous media or other media to form a suspension, adding reactants and catalyst to the suspension to create a reaction mixture, curing the reaction mixture to form a wet gel, drying the wet gel to produce a dry gel, and pyrolyzing the dry gel to produce the mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogel. The aerogel is mechanically robust, electrically conductive, and ultralow-density, and is made of a porous carbon material having 5 to 95% by weight carbonmore » nanotubes and 5 to 95% carbon binder.« less
  • A method of making a mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogel, including the steps of dispersing nanotubes in an aqueous media or other media to form a suspension, adding reactants and catalyst to the suspension to create a reaction mixture, curing the reaction mixture to form a wet gel, drying the wet gel to produce a dry gel, and pyrolyzing the dry gel to produce the mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogel. The aerogel is mechanically robust, electrically conductive, and ultralow-density, and is made of a porous carbon material having 5 to 95% by weight carbonmore » nanotubes and 5 to 95% carbon binder.« less
  • Disclosed here is a device comprising a porous carbon aerogel or composite thereof as an energy storage material, catalyst support, sensor or adsorbent, wherein the porous carbon aerogel comprises a network of interconnected struts comprising carbon nanotube bundles covalently crosslinked by graphitic carbon nanoparticles, wherein the carbon nanotubes account for 5 to 95 wt. % of the aerogel and the graphitic carbon nanoparticles account for 5 to 95 wt. % of the aerogel, and wherein the aerogel has an electrical conductivity of at least 10 S/m and is capable of withstanding strains of more than 10% before fracture.