skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Technical Performance and Economic Evaluation of Evaporative and Membrane-Based Concentration for Biomass-Derived Sugars

Abstract

Several conversion pathways of lignocellulosic biomass to advanced biofuels require or benefit from using concentrated sugar syrups of 600 g/L or greater. And while concentration may seem straightforward, thermal sugar degradation and energy efficiency remain major concerns. This study evaluated the trade-offs in product recovery, energy consumption, and economics between evaporative and membrane-based concentration methods. The degradation kinetics of xylose and glucose were characterized and applied to an evaporator process simulation. Though significant sugar loss was predicted for certain scenarios due to the Maillard reaction, industrially common falling-film plate evaporators offer short residence times (<5 min) and are expected to limit sugar losses. Membrane concentration experiments characterized flux and sugar rejection, but diminished flux occurred at >100 g/L. A second step using evaporation is necessary to achieve target concentrations. Techno-economic process model simulations evaluated the overall economics of concentrating a 35 g/L sugar stream to 600 g/L in a full-scale biorefinery. A two-step approach of preconcentrating using membranes and finishing with an evaporator consumed less energy than evaporation alone but was more expensive because of high capital expenses of the membrane units.

Authors:
ORCiD logo [1];  [1];  [1]; ORCiD logo [1]
  1. National Renewable Energy Lab. (NREL), Golden, CO (United States)
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
OSTI Identifier:
1399846
Report Number(s):
NREL/JA-5100-68273
Journal ID: ISSN 0888-5885; TRN: US1702974
Grant/Contract Number:
AC36-08GO28308
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Industrial and Engineering Chemistry Research
Additional Journal Information:
Journal Volume: 56; Journal Issue: 40; Journal ID: ISSN 0888-5885
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
09 BIOMASS FUELS; sugar concentration; membrane separation; evaporation; glucose xylose degradation kinetics

Citation Formats

Sievers, David A., Stickel, Jonathan J., Grundl, Nicholas J., and Tao, Ling. Technical Performance and Economic Evaluation of Evaporative and Membrane-Based Concentration for Biomass-Derived Sugars. United States: N. p., 2017. Web. doi:10.1021/acs.iecr.7b02178.
Sievers, David A., Stickel, Jonathan J., Grundl, Nicholas J., & Tao, Ling. Technical Performance and Economic Evaluation of Evaporative and Membrane-Based Concentration for Biomass-Derived Sugars. United States. doi:10.1021/acs.iecr.7b02178.
Sievers, David A., Stickel, Jonathan J., Grundl, Nicholas J., and Tao, Ling. Mon . "Technical Performance and Economic Evaluation of Evaporative and Membrane-Based Concentration for Biomass-Derived Sugars". United States. doi:10.1021/acs.iecr.7b02178.
@article{osti_1399846,
title = {Technical Performance and Economic Evaluation of Evaporative and Membrane-Based Concentration for Biomass-Derived Sugars},
author = {Sievers, David A. and Stickel, Jonathan J. and Grundl, Nicholas J. and Tao, Ling},
abstractNote = {Several conversion pathways of lignocellulosic biomass to advanced biofuels require or benefit from using concentrated sugar syrups of 600 g/L or greater. And while concentration may seem straightforward, thermal sugar degradation and energy efficiency remain major concerns. This study evaluated the trade-offs in product recovery, energy consumption, and economics between evaporative and membrane-based concentration methods. The degradation kinetics of xylose and glucose were characterized and applied to an evaporator process simulation. Though significant sugar loss was predicted for certain scenarios due to the Maillard reaction, industrially common falling-film plate evaporators offer short residence times (<5 min) and are expected to limit sugar losses. Membrane concentration experiments characterized flux and sugar rejection, but diminished flux occurred at >100 g/L. A second step using evaporation is necessary to achieve target concentrations. Techno-economic process model simulations evaluated the overall economics of concentrating a 35 g/L sugar stream to 600 g/L in a full-scale biorefinery. A two-step approach of preconcentrating using membranes and finishing with an evaporator consumed less energy than evaporation alone but was more expensive because of high capital expenses of the membrane units.},
doi = {10.1021/acs.iecr.7b02178},
journal = {Industrial and Engineering Chemistry Research},
number = 40,
volume = 56,
place = {United States},
year = {Mon Sep 18 00:00:00 EDT 2017},
month = {Mon Sep 18 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on September 18, 2018
Publisher's Version of Record

Save / Share:
  • This study compared biomass gasification based syngas-to-distillate (S2D) systems using techno-economic analysis (TEA). Three cases, state of technology (SOT), goal, and conventional, were compared in terms of performance and cost. The SOT case represented the best available experimental results for a process starting with syngas using a single-step dual-catalyst reactor for distillate generation. The conventional case mirrored a conventional two-step S2D process consisting of separate syngas-to-methanol and methanol-to-gasoline (MTG) processes. The goal case assumed the same performance as the conventional, but with a single-step S2D technology. TEA results revealed that the SOT was more expensive than the conventional and goalmore » cases. The SOT case suffers from low one-pass yield and high selectivity to light hydrocarbons, both of which drive up production cost. Sensitivity analysis indicated that light hydrocarbon yield and single pass conversion efficiency were the key factors driving the high cost for the SOT case.« less
  • This study reports the comparison of biomass gasification based syngas-to-distillate (S2D) systems using techno-economic analysis (TEA). Three cases, state of technology (SOT) case, goal case, and conventional case, were compared in terms of performance and cost. The SOT case and goal case represent technology being developed at Pacific Northwest National Laboratory for a process starting with syngas using a single-step dual-catalyst reactor for distillate generation (S2D process). The conventional case mirrors the two-step S2D process previously utilized and reported by Mobil using natural gas feedstock and consisting of separate syngas-to-methanol and methanol-to-gasoline (MTG) processes. Analysis of the three cases revealedmore » that the goal case could indeed reduce fuel production cost over the conventional case, but that the SOT was still more expensive than the conventional. The SOT case suffers from low one-pass yield and high selectivity to light hydrocarbons, both of which drive up production cost. Sensitivity analysis indicated that light hydrocarbon yield, single pass conversion efficiency, and reactor space velocity are the key factors driving the high cost for the SOT case.« less
  • We report a new class of highly active and stable tungsten-based catalysts to replace noble metal materials for the hydrogen evolution reaction (HER) in an acidic electrolyte. The catalyst is produced by heating an earth-abundant and low-cost mixture of ammonium tungstate, soybean powder and graphene nanoplatelets (WSoyGnP). The catalyst compound consists of tungsten carbide (W₂C and WC) and tungsten nitride (WN) nanoparticles decorated on graphene nanoplatelets. The catalyst demonstrates an overpotential (η₁₀, the potential at a current density of 10 mA cm⁻²) of 0.105 V, which is the smallest among tungsten-based HER catalysts in acidic media. The coupling with graphenemore » significantly reduces the charge transfer resistance and increases the active surface area of the product, which are favorable for enhancing the HER activity. Therefore, the approach of employing biomass and other less expensive materials as precursors for the production of catalysts with high HER activity provides a new path for the design and development of efficient catalysts for the hydrogen production industry.« less