skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Chemical Tool Peer Review Summary.

Abstract

Chemical tracers are commonly used to characterize fracture networks and to determine the connectivity between the injection and production wells. Currently, most tracer experiments involve injecting the tracer at the injection well, manually collecting liquid samples at the wellhead of the production well, and sending the samples off for laboratory analysis. While this method provides accurate tracer concentration data, it does not provide information regarding the location of the fractures conducting the tracer between wellbores. The goal of this project is to develop chemical sensors and design a prototype tool to help understand the fracture properties of a geothermal reservoir by monitoring tracer concentrations along the depth of the well. The sensors will be able to detect certain species of the ionic tracers (mainly iodide) and pH in-situ during the tracer experiment. The proposed high-temperature (HT) tool will house the chemical sensors as well as a standard logging sensor package of pressure, temperature, and flow sensors in order to provide additional information on the state of the geothermal reservoir. The sensors and the tool will be able to survive extended deployments at temperatures up to 225 °C and high pressures to provide real-time temporal and spatial feedback of tracer concentration.more » Data collected from this tool will allow for the real-time identification of the fractures conducting chemical tracers between wellbores along with the pH of the reservoir fluid at various depths.« less

Authors:
 [1];  [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Geothermal Technologies Program (EE-2C)
OSTI Identifier:
1399834
Report Number(s):
SAND2017-11000R
657721
DOE Contract Number:
AC04-94AL85000
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Cashion, Avery Ted, and Cieslewski, Grzegorz. Chemical Tool Peer Review Summary.. United States: N. p., 2017. Web. doi:10.2172/1399834.
Cashion, Avery Ted, & Cieslewski, Grzegorz. Chemical Tool Peer Review Summary.. United States. doi:10.2172/1399834.
Cashion, Avery Ted, and Cieslewski, Grzegorz. Sun . "Chemical Tool Peer Review Summary.". United States. doi:10.2172/1399834. https://www.osti.gov/servlets/purl/1399834.
@article{osti_1399834,
title = {Chemical Tool Peer Review Summary.},
author = {Cashion, Avery Ted and Cieslewski, Grzegorz},
abstractNote = {Chemical tracers are commonly used to characterize fracture networks and to determine the connectivity between the injection and production wells. Currently, most tracer experiments involve injecting the tracer at the injection well, manually collecting liquid samples at the wellhead of the production well, and sending the samples off for laboratory analysis. While this method provides accurate tracer concentration data, it does not provide information regarding the location of the fractures conducting the tracer between wellbores. The goal of this project is to develop chemical sensors and design a prototype tool to help understand the fracture properties of a geothermal reservoir by monitoring tracer concentrations along the depth of the well. The sensors will be able to detect certain species of the ionic tracers (mainly iodide) and pH in-situ during the tracer experiment. The proposed high-temperature (HT) tool will house the chemical sensors as well as a standard logging sensor package of pressure, temperature, and flow sensors in order to provide additional information on the state of the geothermal reservoir. The sensors and the tool will be able to survive extended deployments at temperatures up to 225 °C and high pressures to provide real-time temporal and spatial feedback of tracer concentration. Data collected from this tool will allow for the real-time identification of the fractures conducting chemical tracers between wellbores along with the pH of the reservoir fluid at various depths.},
doi = {10.2172/1399834},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Sun Oct 01 00:00:00 EDT 2017},
month = {Sun Oct 01 00:00:00 EDT 2017}
}

Technical Report:

Save / Share: