skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Data Link Summary for Peer Review.

Abstract

New generations of high-temperature (HT) sensors and electronics are enabling increased measurement speed and accuracy allowing collection of more accurate and relevant data by downhole tools. Unfortunately, this increased capability is often not realized due to the bottleneck in the uplink data transmission rates due to poor signal characteristics of HT wireline. The objective of this project is to enable the high transmission rate of raw data from downhole tools such as acoustic logging tools and seismic measurement devices to minimize the need for downhole signal processing. To achieve this objective, Sandia has undertaken the effort to develop an asymmetric high-temperature (HT), highspeed data link system for downhole tools capable of operating at temperatures of 210°C while taking advantage of existing wireline transmission channels. Current data rates over HT single-conductor wireline are limited to approximately 200 kbps. The goal system will be capable of transmitting data from the tool to the surface (uplink) at rates of > 1Mbps over 5,000 feet of single-conductor wireline as well as automatically adapt the data rate to the longer wirelines by adapting modern telecommunications techniques to operate on high temperature electronics. The data rate from the surface to the tool (downlink) will be significantlymore » smaller but sufficient for command and control functions. While 5,000 feet of cable is the benchmark for this effort, improvements apply to all lengths of cable.« less

Authors:
 [1];  [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Geothermal Technologies Program (EE-2C)
OSTI Identifier:
1399833
Report Number(s):
SAND2017-10999R
657720
DOE Contract Number:
AC04-94AL85000
Resource Type:
Technical Report
Country of Publication:
United States
Language:
English
Subject:
47 OTHER INSTRUMENTATION

Citation Formats

Cashion, Avery Ted, and Cieslewski, Grzegorz. Data Link Summary for Peer Review.. United States: N. p., 2017. Web. doi:10.2172/1399833.
Cashion, Avery Ted, & Cieslewski, Grzegorz. Data Link Summary for Peer Review.. United States. doi:10.2172/1399833.
Cashion, Avery Ted, and Cieslewski, Grzegorz. Sun . "Data Link Summary for Peer Review.". United States. doi:10.2172/1399833. https://www.osti.gov/servlets/purl/1399833.
@article{osti_1399833,
title = {Data Link Summary for Peer Review.},
author = {Cashion, Avery Ted and Cieslewski, Grzegorz},
abstractNote = {New generations of high-temperature (HT) sensors and electronics are enabling increased measurement speed and accuracy allowing collection of more accurate and relevant data by downhole tools. Unfortunately, this increased capability is often not realized due to the bottleneck in the uplink data transmission rates due to poor signal characteristics of HT wireline. The objective of this project is to enable the high transmission rate of raw data from downhole tools such as acoustic logging tools and seismic measurement devices to minimize the need for downhole signal processing. To achieve this objective, Sandia has undertaken the effort to develop an asymmetric high-temperature (HT), highspeed data link system for downhole tools capable of operating at temperatures of 210°C while taking advantage of existing wireline transmission channels. Current data rates over HT single-conductor wireline are limited to approximately 200 kbps. The goal system will be capable of transmitting data from the tool to the surface (uplink) at rates of > 1Mbps over 5,000 feet of single-conductor wireline as well as automatically adapt the data rate to the longer wirelines by adapting modern telecommunications techniques to operate on high temperature electronics. The data rate from the surface to the tool (downlink) will be significantly smaller but sufficient for command and control functions. While 5,000 feet of cable is the benchmark for this effort, improvements apply to all lengths of cable.},
doi = {10.2172/1399833},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Sun Oct 01 00:00:00 EDT 2017},
month = {Sun Oct 01 00:00:00 EDT 2017}
}

Technical Report:

Save / Share: