skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Low-energy chlorine-tolerant desalination membranes.

Abstract

Abstract not provided.

Authors:
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
EPRI
OSTI Identifier:
1399826
Report Number(s):
SAND2016-10175PE
648186
DOE Contract Number:
AC04-94AL85000
Resource Type:
Conference
Resource Relation:
Conference: Proposed for presentation at the Innovate New Mexico Technology Showcase held October 11, 2016 in Albuquerque, NM.
Country of Publication:
United States
Language:
English

Citation Formats

Biedermann, Laura. Low-energy chlorine-tolerant desalination membranes.. United States: N. p., 2016. Web.
Biedermann, Laura. Low-energy chlorine-tolerant desalination membranes.. United States.
Biedermann, Laura. Sat . "Low-energy chlorine-tolerant desalination membranes.". United States. doi:. https://www.osti.gov/servlets/purl/1399826.
@article{osti_1399826,
title = {Low-energy chlorine-tolerant desalination membranes.},
author = {Biedermann, Laura},
abstractNote = {Abstract not provided.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Sat Oct 01 00:00:00 EDT 2016},
month = {Sat Oct 01 00:00:00 EDT 2016}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • Abstract not provided.
  • The present invention provides a membrane, kit, and method of making a hydrophilic-hydrophobic random copolymer membrane. The hydrophilic-hydrophobic random copolymer membrane includes a hydrophilic-hydrophobic random copolymer. The hydrophilic-hydrophobic random copolymer includes one or more hydrophilic monomers having a sulfonated polyarylsulfone monomer and a second monomer and one or more hydrophobic monomers having a non-sulfonated third monomer and a fourth monomer. The sulfonated polyarylsulfone monomer introduces a sulfonate into the hydrophilic-hydrophobic random copolymer prior to polymerization.
  • Abstract not provided.
  • Abstract not provided.
  • Nuclear energy is playing an important role in electricity generation, producing 16% of the world's electricity. However, most of the world's energy consumption is in the form of heat, in which case nuclear energy could also play an important role. In particular, process heat for seawater desalination using nuclear energy has been of growing interest to some Member States of the International Atomic Energy Agency over the past two decades. This growing interest stems from increasingly acute freshwater shortages in many arid and semi-arid zones around the world. Indeed, several national and international nuclear desalination demonstration programs are already undermore » way or being planned. Of particular interest are projects for seawater nuclear desalination plants in coastal regions, where saline feed water can serve the dual purpose of cooling water for the nuclear reactor and as feed water for the desalination plant. In principle any nuclear reactor can provide energy (low-grade heat and/or electricity), as required by desalination processes. However, there are some additional requirements to be met under specific conditions in order to introduce nuclear desalination. Technical issues include meeting more stringent safety requirements (nuclear reactors themselves and nuclear-desalination integrated complexes in particular), and performance improvement of the integrated systems. Economic competitiveness is another important factor to be considered for a broader deployment of nuclear desalination. For technical robustness and economic competitiveness a number of design variants of coupling configurations of nuclear desalination integrated plant concepts are being evaluated. This paper identifies and discusses various factors, which support the attractiveness of nuclear desalination. It further summarizes some of the key approaches recommended for nuclear desalination complex design and gives an overview of various design concepts of nuclear desalination plants, which are experienced, being implemented or evaluated by several IAEA Member States. Operating experience with nuclear desalination using a liquid-metal reactor BN-350 in Kazakhstan and several Pressurized Water Reactor units in Japan is discussed. Results of economic analyses of nuclear desalination are also presented in order to illustrate the competitiveness of this technology with other conventional desalination operations. (authors)« less