skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Shape-Specific Patterning of Polymer-Functionalized Nanoparticles

Abstract

Chemically and topographically patterned nanoparticles (NPs) with dimensions on the order of tens of nanometers have a diverse range of applications and are a valuable system for fundamental research. Recently, thermodynamically controlled segregation of a smooth layer of polymer ligands into pinned micelles (patches) offered an approach to nanopatterning of polymer-functionalized NPs. Control of the patch number, size, and spatial distribution on the surface of spherical NPs has been achieved, however, the role of NP shape remained elusive. Here, we report the role of NP shape, namely, the effect of the local surface curvature, on polymer segregation into surface patches. For polymer-functionalized metal nanocubes, we show experimentally and theoretically that the patches form preferentially on the high-curvature regions such as vertices and edges. An in situ transformation of the nanocubes into nanospheres leads to the change in the number and distribution of patches; a process that is dominated by the balance between the surface energy and the stretching energy of the polymer ligands. The experimental and theoretical results presented in this work are applicable to surface patterning of polymer-capped NPs with different shapes, which then enables the exploration of patch-directed self-assembly, as colloidal surfactants, and as templates for the synthesismore » of hybrid nanomaterials.« less

Authors:
 [1];  [1];  [1];  [2];  [3];  [4]; ORCiD logo [5]
  1. Univ. of Toronto, ON (Canada). Dept. of Chemistry
  2. Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials
  3. Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials; Columbia Univ., New York, NY (United States). Dept. of Chemical Engineering, Dept. of Applied Physics and Applied Mathematics
  4. Russian Academy of Sciences (RAS) and St. Petersburg National Univ. of Informational Technologies, St. Petersburg (Russian Federation). Inst. of Macromolecular Compounds
  5. Univ. of Toronto, ON (Canada). Dept. of Chemistry, Inst. of Biomaterials and Biomedical Engineering, Dept. of Chemical Engineering and Applied Chemistry
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States). Center for Functional Nanomaterials (CFN)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1399669
Report Number(s):
BNL-114376-2017-JA
Journal ID: ISSN 1936-0851; KC0403020
Grant/Contract Number:
SC0012704
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
ACS Nano
Additional Journal Information:
Journal Volume: 11; Journal Issue: 5; Journal ID: ISSN 1936-0851
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; 36 MATERIALS SCIENCE; Nanoparticles; nanocubes; surface patterning; surface curvature; pinned micelles; polymer patches; Center for Functional Nanomaterials

Citation Formats

Galati, Elizabeth, Tebbe, Moritz, Querejeta-Fernández, Ana, Xin, Huolin L., Gang, Oleg, Zhulina, Ekaterina B., and Kumacheva, Eugenia. Shape-Specific Patterning of Polymer-Functionalized Nanoparticles. United States: N. p., 2017. Web. doi:10.1021/acsnano.7b01669.
Galati, Elizabeth, Tebbe, Moritz, Querejeta-Fernández, Ana, Xin, Huolin L., Gang, Oleg, Zhulina, Ekaterina B., & Kumacheva, Eugenia. Shape-Specific Patterning of Polymer-Functionalized Nanoparticles. United States. doi:10.1021/acsnano.7b01669.
Galati, Elizabeth, Tebbe, Moritz, Querejeta-Fernández, Ana, Xin, Huolin L., Gang, Oleg, Zhulina, Ekaterina B., and Kumacheva, Eugenia. Mon . "Shape-Specific Patterning of Polymer-Functionalized Nanoparticles". United States. doi:10.1021/acsnano.7b01669. https://www.osti.gov/servlets/purl/1399669.
@article{osti_1399669,
title = {Shape-Specific Patterning of Polymer-Functionalized Nanoparticles},
author = {Galati, Elizabeth and Tebbe, Moritz and Querejeta-Fernández, Ana and Xin, Huolin L. and Gang, Oleg and Zhulina, Ekaterina B. and Kumacheva, Eugenia},
abstractNote = {Chemically and topographically patterned nanoparticles (NPs) with dimensions on the order of tens of nanometers have a diverse range of applications and are a valuable system for fundamental research. Recently, thermodynamically controlled segregation of a smooth layer of polymer ligands into pinned micelles (patches) offered an approach to nanopatterning of polymer-functionalized NPs. Control of the patch number, size, and spatial distribution on the surface of spherical NPs has been achieved, however, the role of NP shape remained elusive. Here, we report the role of NP shape, namely, the effect of the local surface curvature, on polymer segregation into surface patches. For polymer-functionalized metal nanocubes, we show experimentally and theoretically that the patches form preferentially on the high-curvature regions such as vertices and edges. An in situ transformation of the nanocubes into nanospheres leads to the change in the number and distribution of patches; a process that is dominated by the balance between the surface energy and the stretching energy of the polymer ligands. The experimental and theoretical results presented in this work are applicable to surface patterning of polymer-capped NPs with different shapes, which then enables the exploration of patch-directed self-assembly, as colloidal surfactants, and as templates for the synthesis of hybrid nanomaterials.},
doi = {10.1021/acsnano.7b01669},
journal = {ACS Nano},
number = 5,
volume = 11,
place = {United States},
year = {Mon May 01 00:00:00 EDT 2017},
month = {Mon May 01 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2works
Citation information provided by
Web of Science

Save / Share:
  • The ability to form blends of polymers offers the opportunity of creating a new class of materials with enhanced properties. In addition to the polymer components, recent advances in nanoengineering have resulted in the development of nanosized inorganic particles that can be used to improve the properties of the blend, such as the flammability and the mechanical properties. While traditional methods using copolymer compatibilizers have been used to strengthen polymer blends, here, we show that the inorganic nanosized filler additive can also serve as a compatibilizer as it can localize to the interface between the polymers. We use experimental andmore » theoretical studies to show the fundamental mechanisms by which inorganic fillers with large aspect ratio and at least one-dimension in the nanometer range, can act as non-specific compatibilizers for polymer blends. We examine a series of nanosized fillers, ranging from nanotubes to nanoclays (with varying aspect ratios) in a model polystyrene (PS)/poly(methylmethacyralate) (PMMA) blend. Using a number of experimental techniques such as transmission electron microscopy (TEM), scanning tunneling X-ray microscopy (STXM), and atomic force microscopy (AFM) we postulate that the mechanism of compatibilization occurs as a result of the fillers forming in situ grafts with the immiscible polymers. We also use theoretical studies to show that the aspect ratio and the bending energy of the fillers play a key role in the compatibilization process. Our results indicate that the compatibilization is a general phenomenon, which should occur with all large aspect ratio nanofiller additives to polymer blends.« less
  • No abstract prepared.
  • Patterning of colloidal particles with chemically or topographically distinct surface domains (patches) has attracted intense research interest. Surface-patterned particles act as colloidal analogues of atoms and molecules serve as model systems in studies of phase transitions in liquid systems, behave as ‘colloidal surfactants’ and function as templates for the synthesis of hybrid particles. The generation of micrometre- and submicrometre-sized patchy colloids is now efficient but surface patterning of inorganic colloidal nanoparticles with dimensions of the order of tens of nanometres is uncommon. Such nanoparticles exhibit size- and shape-dependent optical, electronic and magnetic properties, and their assemblies show new collective properties.more » At present, nanoparticle patterning is limited to the generation of two-patch nanoparticles and nanoparticles with surface ripples or a ‘raspberry’ surface morphology. We demonstrate nanoparticle surface patterning, which utilizes thermodynamically driven segregation of polymer ligands from a uniform polymer brush into surface-pinned micelles following a change in solvent quality. Patch formation is reversible but can be permanently preserved using a photocrosslinking step. The methodology offers the ability to control the dimensions of patches, their spatial distribution and the number of patches per nanoparticle, in agreement with a theoretical model. The versatility of the strategy is demonstrated by patterning nanoparticles with different dimensions, shapes and compositions, tethered with various types of polymers and subjected to different external stimuli. Furthermore, these patchy nanocolloids have potential applications in fundamental research, the self-assembly of nanomaterials, diagnostics, sensing and colloidal stabilization.« less
  • In this study, ion-specific effects on the assembly and crystallization of polyethylene-glycol-grafted Au nanoparticles (PEG-AuNPs) at the vapor–liquid interface are examined by surface sensitive synchrotron X-ray scattering methods. We show that monovalent salts, such as KCl and NaCl, that do not advance phase separation of pure PEG at room temperature induce two-dimensional (2D) self-assembly and crystallization of PEG-AuNPs with some distinctions. Whereas for KCl the 2D hexagonal coherence length of the PEG-AuNP superlattices is remarkably large compared to other salts (over micron-sized crystalline grains), NaCl induces coexistence of two hexagonal structures. Using various salts, we find that the value ofmore » the lattice constant is correlated to the ionic hydration entropy consistent with the Hofmeister series.« less
    Cited by 3