skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ni-Catalyzed Regioselective 1,2-Dicarbofunctionalization of Olefins by Intercepting Heck Intermediates as Imine-Stabilized Transient Metallacycles

Abstract

We disclose a strategy for Ni-catalyzed regioselective dicarbofunctionalization of olefins in styrene derivatives by intercepting Heck C(sp 3)-NiX intermediates with arylzinc reagents. This approach utilizes a readily removable imine as a coordinating group that plays a dual role of intercepting oxidative addition species derived from aryl halides and triflates to promote Heck carbometallation, and stabilizing the Heck C(sp 3)-NiX intermediates as transient metallacycles to suppress β-hydride elimination and facilitate transmetalation/reductive elimination steps. This method affords diversely-substituted 1,1,2-riarylethyl products that occur as structural motifs in various natural products.

Authors:
 [1];  [1];  [1];  [1];  [1];  [2]; ORCiD logo [1]
  1. Univ. of New Mexico, Albuquerque, NM (United States)
  2. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1399511
Report Number(s):
SAND-2017-7180J
Journal ID: ISSN 0002-7863; 655131
Grant/Contract Number:
AC04-94AL85000
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Journal of the American Chemical Society
Additional Journal Information:
Journal Volume: 139; Journal Issue: 31; Journal ID: ISSN 0002-7863
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Shrestha, Bijay, Basnet, Prakash, Dhungana, Roshan K., KC, Shekhar, Thapa, Surendra, Sears, Jeremiah M., and Giri, Ramesh. Ni-Catalyzed Regioselective 1,2-Dicarbofunctionalization of Olefins by Intercepting Heck Intermediates as Imine-Stabilized Transient Metallacycles. United States: N. p., 2017. Web. doi:10.1021/jacs.7b06340.
Shrestha, Bijay, Basnet, Prakash, Dhungana, Roshan K., KC, Shekhar, Thapa, Surendra, Sears, Jeremiah M., & Giri, Ramesh. Ni-Catalyzed Regioselective 1,2-Dicarbofunctionalization of Olefins by Intercepting Heck Intermediates as Imine-Stabilized Transient Metallacycles. United States. doi:10.1021/jacs.7b06340.
Shrestha, Bijay, Basnet, Prakash, Dhungana, Roshan K., KC, Shekhar, Thapa, Surendra, Sears, Jeremiah M., and Giri, Ramesh. 2017. "Ni-Catalyzed Regioselective 1,2-Dicarbofunctionalization of Olefins by Intercepting Heck Intermediates as Imine-Stabilized Transient Metallacycles". United States. doi:10.1021/jacs.7b06340.
@article{osti_1399511,
title = {Ni-Catalyzed Regioselective 1,2-Dicarbofunctionalization of Olefins by Intercepting Heck Intermediates as Imine-Stabilized Transient Metallacycles},
author = {Shrestha, Bijay and Basnet, Prakash and Dhungana, Roshan K. and KC, Shekhar and Thapa, Surendra and Sears, Jeremiah M. and Giri, Ramesh},
abstractNote = {We disclose a strategy for Ni-catalyzed regioselective dicarbofunctionalization of olefins in styrene derivatives by intercepting Heck C(sp3)-NiX intermediates with arylzinc reagents. This approach utilizes a readily removable imine as a coordinating group that plays a dual role of intercepting oxidative addition species derived from aryl halides and triflates to promote Heck carbometallation, and stabilizing the Heck C(sp3)-NiX intermediates as transient metallacycles to suppress β-hydride elimination and facilitate transmetalation/reductive elimination steps. This method affords diversely-substituted 1,1,2-riarylethyl products that occur as structural motifs in various natural products.},
doi = {10.1021/jacs.7b06340},
journal = {Journal of the American Chemical Society},
number = 31,
volume = 139,
place = {United States},
year = 2017,
month = 7
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on July 24, 2018
Publisher's Version of Record

Save / Share:
  • The development of methods for the functionalization of alkanes is of cardinal importance in catalytic chemistry. A specific functionalization of particularly great potential value is the conversion of n-alkanes to the corresponding 1-alkenes ({alpha}-olefins) since these serve as precursors for a wide range of commodity-scale chemicals (>2 {times} 10{sup 9} kg/yr). Such a conversion is also an intriguing challenge as viewed from a fundamental perspective. n-Alkanes are the simplest organic molecules with the potential to undergo regioselective transformations; {alpha}-olefins are the thermodynamically least stable of the corresponding double-bond isomers and any mechanism for their formation must presumably involve activation ofmore » the strongest bond (primary C-{single_bond}H) in the molecule.« less
  • The mechanism of hydroarylation of olefins by a homogeneous Ph-Ir(acac){sub 2}(L) catalyst is elucidated by first principles quantum mechanical methods (DFT), with particular emphasis on activation of the catalyst, catalytic cycle, and interpretation of experimental observations. On the basis of this mechanism, we suggest new catalysts expected to have improved activity. Initiation of the catalyst from the inert trans-form into the active cis-form occurs through a dissociative pathway with a calculated {Delta}H(0 K){sub {+-}} = 35.1 kcal/mol and {Delta}G(298 K){sub {+-}} = 26.1 kcal/mol. The catalytic cycle features two key steps, 1,2-olefin insertion and C?H activation via a novel mechanism,more » oxidative hydrogen migration. The olefin insertion is found to be rate determining, with a calculated {Delta}H(0 K){sub {+-}} = 27.0 kcal/mol and {Delta}G(298 K){sub {+-}} = 29.3 kcal/mol. The activation energy increases with increased electron density on the coordinating olefin, as well as increased electron-donating character in the ligand system. The regioselectivity is shown to depend on the electronic and steric characteristics of the olefin, with steric bulk and electron withdrawing character favoring linear product formation. Activation of the C?H bond occurs in a concerted fashion through a novel transition structure best described as an oxidative hydrogen migration. The character of the transition structure is seven coordinate Ir{sup V}, with a full bond formed between the migrating hydrogen and iridium. Several experimental observations are investigated and explained: (a) The nature of L influences the rate of the reaction through a ground-state effect. (b) The lack of {beta}-hydride products is due to kinetic factors, although {beta}-hydride elimination is calculated to be facile, all further reactions are kinetically inaccessible. (c) Inhibition by excess olefin is caused by competitive binding of olefin and aryl starting materials during the catalytic cycle in a statistical fashion. On the basis of this insertion-oxidative hydrogen transfer mechanism we suggest that electron-withdrawing substituents on the acac ligands, such as trifluoromethyl groups, are good modifications for catalysts with higher activity.« less
  • Here, we have developed a single step palladium-catalyzed Heck coupling of aryl halides with vinyl phosphonic acid to produce functionalized (E)-styryl phosphonic acids. This pathway utilizes a variety of commercially available aryl halides, vinyl phosphonic acid and Pd(P(tBu) 3) 2 as catalyst. These conditions produce a wide range of styryl phosphonic acids with high purities and good to excellent yields (31–80%).