skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ecological Responses at Mount St. Helens: Revisited 35 years after the 1980 Eruption

 [1]; ORCiD logo [2]
  1. United States Department of Agriculture (USDA) Forest Service, Northern Research Station
  2. ORNL
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
OSTI Identifier:
DOE Contract Number:
Resource Type:
Country of Publication:
United States

Citation Formats

Crisafulli, Charles M., and Dale, Virginia H. Ecological Responses at Mount St. Helens: Revisited 35 years after the 1980 Eruption. United States: N. p., 2017. Web.
Crisafulli, Charles M., & Dale, Virginia H. Ecological Responses at Mount St. Helens: Revisited 35 years after the 1980 Eruption. United States.
Crisafulli, Charles M., and Dale, Virginia H. Fri . "Ecological Responses at Mount St. Helens: Revisited 35 years after the 1980 Eruption". United States. doi:.
title = {Ecological Responses at Mount St. Helens: Revisited 35 years after the 1980 Eruption},
author = {Crisafulli, Charles M. and Dale, Virginia H.},
abstractNote = {},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Fri Sep 01 00:00:00 EDT 2017},
month = {Fri Sep 01 00:00:00 EDT 2017}

Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this book.

Save / Share:
  • Dissolved and suspended concentrations of cadmium, copper, iron, manganese, nickel, lead, and zinc were measured in the Columbia River Estuary following the 18 May 1980 eruption of Mount St. Helens. Soluble concentrations of these trace elements were not substantially elevated by the influx of volcanic ash and mud into the estuary during this period, except for somewhat higher than usual concentrations of manganese and copper. A laboratory experiment indicates that manganese leached from volcanic debris in fresh water and in the transition from fresh to slightly saline water probably caused the elevated Mn leaching from the material into fresh water.
  • The 1980 eruption of Mount St. Helens, Washington, afforded an opportunity to study its physical, chemical, and biological effects on lakes near the volcano and to describe two newly created lakes. From June 1980 to August 1982, water samples were collected from four lakes in the blast zone and two outside the blast zone, as well as from the two newly created lakes. Concentrations of chemical constituents were inversely related to the distance of a lake from the volcano. The recovery of physical, chemical, and biological characteristics of the lakes will depend on stabilization of the volcano and lake watersheds,more » dilution and water-exchange rates, and biological processes within each lake. Excluding Spirit Lake from consideration, it was estimated from the study that St. Helens Lake would be the slowest of the study lakes to recover, and Venus Lake would be the fastest.« less
  • The downwind deposition and radiation dose have been calculated for the tropospheric part of the ash cloud from the May 18, 1980 eruption of Mount St. Helens, using a large-cloud diffusion model. At that time the naturally occurring radionuclides of radium and thorium, whose radon daughters normally seep very slowly from the rocks and soil, were violently released to the atmosphere. The largest dose to an individual from these nuclides is small (in the microrem range), but the population dose to those affected by the radioactivity in the ash is about 100 person-rem. This population dose from Mount St. Helensmore » is much greater than the annual person-rem routinely released by a typical large nuclear power plant. It is estimated that subsequent eruptions of Mount St. Helens have doubled or tripled the person-rem calculated for the initial large eruption; this total population dose is about the same as the lower-bound estimate of the population dose from the 1979 accident at the Three Mile Island nuclear power plant. The long-range global ash deposition of the May 18 eruption has been estimated through 1984, using a global deposition model. The maximum deposition is nearly 1000 kg/km/sup 2/ and occurs in the spring of 1981 over middle latitudes of the Northern Hemisphere.« less
  • Seismographs near Mount St. Helens Volcano recorded an earthquake swarm lasting nearly 2 months prior to the May 18, 1980, eruption. The earthquakes are divided into four classes based on station CPW ( = 116 km) seismogram characteristics: (1) events with Sv:P amplitude ratio > 3 and dominant frequency > 3 Hz; (2) events with Sv:P ratio between 1 and 3 and dominant frequency > 2 Hz; (3) events similar to characteristic 2 but with a strong (probably surface wave) phase just after the S phase; and (4) events with frequencies between 1 and 2 Hz lacking a clear Smore » phase. The seismicity pattern for each of the four classes is unique. Solid earth stress and strain tides were calculated at the average hypocentral depth of 4 km. Stress and strain tides induced by ocean loading were also calculated; their amplitudes are typically 20-40% those of the solid earth tides at the location of Mount St. Helens. A weak but significant correlation exists between the latter two classes of events and the tides for a time interval of about 5 days preceding the first onset of volcanic tremor and about 5 days thereafter. The polarity of the correlation is opposite for the two classes of events. In each case, the phase of the correlation changes systematically with time, the changes coinciding with the onset of tremor on March 31 and with a pronounced decrease in earthquake energy release rate on April 3. There are no significant correlations between the tides and the number of events or energy release of these two classes of earthquakes during any other interval between March 20 and May 18, 1980. The first two classes of events show no evidence of significant tidal correlation at any time during the study period. 20 references, 8 figures, 2 tables.« less