skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Supercapacitor to Provide Ancillary Services: Preprint

Abstract

Supercapacitor technology has reached a level of maturity as a viable energy storage option available to support a modern electric power system grid; however, its application is still limited because of its energy capacity and the cost of the commercial product. In this paper, we demonstrate transient models of supercapacitor energy storage plants operating in coordination with run-of-the-river (ROR), doubly-fed induction generator hydropower plants (HPP) using a system control concept and architecture developed. A detailed transient model of a supercapacitor energy storage device is coupled with the grid via a three-phase inverter/rectifier and bidirectional DC-DC converter. In addition, we use a version of a 14-bus IEEE test case that includes the models of the supercapacitor energy storage device, ROR HPPs, and synchronous condensers that use the rotating synchronous generators of retired coal-powered plants. The purpose of the synchronous condensers is to enhance the system stability by providing voltage and reactive power control, provide power system oscillations damping, and maintain system inertia at secure levels. The control layer provides coordinated, decentralized operation of distributed ROR HPPs and energy storage as aggregate support to power system operations.

Authors:
ORCiD logo [1];  [1];  [2];  [2];  [2];  [3]
  1. National Renewable Energy Laboratory (NREL), Golden, CO (United States)
  2. Idaho National Laboratory
  3. Argonne National Laboratory
Publication Date:
Research Org.:
National Renewable Energy Lab. (NREL), Golden, CO (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Wind and Water Technologies Office (EE-4W)
OSTI Identifier:
1399347
Report Number(s):
NREL/CP-5D00-68740
DOE Contract Number:
AC36-08GO28308
Resource Type:
Conference
Resource Relation:
Conference: Presented at the 2017 IEEE Energy Conversion Congress and Exhibition (IEEE ECCE), 1-5 October 2017, Cincinnati, Ohio
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; supercapacitory; energy storage; ancillary services; run-of-the-river; ROR; doubly-fed induction generator; hydropower plants; HPP

Citation Formats

Muljadi, Eduard, Gevorgian, Vahan, Luo, Yusheng, Mohanpurkar, M., Hovsapian, R., and Koritarov, V. Supercapacitor to Provide Ancillary Services: Preprint. United States: N. p., 2017. Web.
Muljadi, Eduard, Gevorgian, Vahan, Luo, Yusheng, Mohanpurkar, M., Hovsapian, R., & Koritarov, V. Supercapacitor to Provide Ancillary Services: Preprint. United States.
Muljadi, Eduard, Gevorgian, Vahan, Luo, Yusheng, Mohanpurkar, M., Hovsapian, R., and Koritarov, V. 2017. "Supercapacitor to Provide Ancillary Services: Preprint". United States. doi:. https://www.osti.gov/servlets/purl/1399347.
@article{osti_1399347,
title = {Supercapacitor to Provide Ancillary Services: Preprint},
author = {Muljadi, Eduard and Gevorgian, Vahan and Luo, Yusheng and Mohanpurkar, M. and Hovsapian, R. and Koritarov, V.},
abstractNote = {Supercapacitor technology has reached a level of maturity as a viable energy storage option available to support a modern electric power system grid; however, its application is still limited because of its energy capacity and the cost of the commercial product. In this paper, we demonstrate transient models of supercapacitor energy storage plants operating in coordination with run-of-the-river (ROR), doubly-fed induction generator hydropower plants (HPP) using a system control concept and architecture developed. A detailed transient model of a supercapacitor energy storage device is coupled with the grid via a three-phase inverter/rectifier and bidirectional DC-DC converter. In addition, we use a version of a 14-bus IEEE test case that includes the models of the supercapacitor energy storage device, ROR HPPs, and synchronous condensers that use the rotating synchronous generators of retired coal-powered plants. The purpose of the synchronous condensers is to enhance the system stability by providing voltage and reactive power control, provide power system oscillations damping, and maintain system inertia at secure levels. The control layer provides coordinated, decentralized operation of distributed ROR HPPs and energy storage as aggregate support to power system operations.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = 2017,
month =
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • Hydropower plant (HPP) generation comprises a considerable portion of bulk electricity generation and is delivered with a low-carbon footprint. In fact, HPP electricity generation provides the largest share from renewable energy resources, which include wind and solar. Increasing penetration levels of wind and solar lead to a lower inertia on the electric grid, which poses stability challenges. In recent years, breakthroughs in energy storage technologies have demonstrated the economic and technical feasibility of extensive deployments of renewable energy resources on electric grids. If integrated with scalable, multi-time-step energy storage so that the total output can be controlled, multiple run-of-the-river (ROR)more » HPPs can be deployed. Although the size of a single energy storage system is much smaller than that of a typical reservoir, the ratings of storages and multiple ROR HPPs approximately equal the rating of a large, conventional HPP. This paper proposes cohesively managing multiple sets of energy storage systems distributed in different locations. This paper also describes the challenges associated with ROR HPP system architecture and operation.« less
  • Electricity generated by Hydropower Plants (HPPs) contributes a considerable portion of bulk electricity generation and delivers it with a low carbon footprint. In fact, HPP electricity generation provides the largest share from renewable energy resources, which includes solar and wind energy. The increasing penetration of wind and solar penetration leads to a lowered inertia in the grid and hence poses stability challenges. In recent years, breakthrough in energy storage technologies have demonstrated the economic and technical feasibility of extensive deployments in power grids. Multiple ROR HPPs if integrated with scalable, multi time-step energy storage so that the total output canmore » be controlled. Although, the size of a single energy storage is far smaller than that of a typical reservoir, cohesively managing multiple sets of energy storage distributed in different locations is proposed. The ratings of storages and multiple ROR HPPs approximately equals the rating of a large, conventional HPP. The challenges associated with the system architecture and operation are described. Energy storage technologies such as supercapacitors, flywheels, batteries etc. can function as a dispatchable synthetic reservoir with a scalable size of energy storage will be integrated. Supercapacitors, flywheels, and battery are chosen to provide fast, medium, and slow responses to support grid requirements. Various dynamic and transient power grid conditions are simulated and performances of integrated ROR HPPs with energy storage is provided. The end goal of this research is to investigate the inertial equivalence of a large, conventional HPP with a unique set of multiple ROR HPPs and optimally rated energy storage systems.« less
  • With the advent of competition in the electric power marketplace, this paper reviews changes that affect wind and other renewable energy technologies, and discusses the role of federal and state policies in the recent wind installations in the United States. In particular, it reviews the implications of ancillary service requirements on a wind farm and presents initial operating results of monitoring one Midwest wind farm. Under federal energy policy, each generator must purchase, or otherwise provide for, ancillary services, such as dispatch, regulation, operation reserve, voltage regulation, and scheduling required to move power to load. As a renewable technology thatmore » depends on the forces of nature, short-term output variations are inherently greater for a wind farm than for a gas-fired combined cycle or a supercritical coal-fired unit.« less
  • With ever increasing penetration of wind capacity and growing interest in wind power by electric utilities and other power providers, questions about the impacts and costs associated with maintaining a stable grid is receiving lots of attention. These issues are important, both in competitive and regulated monopoly markets.To evaluate the range of ancillary service impact of wind power plants, wind power plant output fluctuations on the order of seconds to minutes must be known. However, the data required for a credible analysis has not been widely available. The National Renewable Energy Laboratory (NREL), through its own efforts, and in conjunctionmore » with a wide group of stakeholders including other national labs, consultants, developers, utilities, and the non-profit Utility Wind Interest Group, has initiated measurement and analysis activities. The efforts are ongoing. While final system-cost results are not available, this paper will describe the progress to date and present typical results and statistical analysis. In addition, methods will be explained with the aim of soliciting feedback from others looking at similar issues worldwide.« less
  • This paper focuses on how the ancillary service market designs are implemented and how they may require changes on systems with greater penetrations of variable renewable energy suppliers, in particular wind power. Ancillary services markets have been developed in many of the restructured power system regions throughout the world. Ancillary services include the services that support the provision of energy to support power system reliability. The ancillary services markets are tied tightly to the design of the energy market and to the physics of the system and therefore careful consideration of power system economics and engineering must be considered inmore » their design. This paper focuses on how the ancillary service market designs are implemented and how they may require changes on systems with greater penetrations of variable renewable energy suppliers, in particular wind power.« less