skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Intelligent Gate Drive for Fast Switching and Crosstalk Suppression of SiC Devices

Abstract

This study presents an intelligent gate drive for silicon carbide (SiC) devices to fully utilize their potential of high switching-speed capability in a phase-leg configuration. Based on the SiC device's intrinsic properties, a gate assist circuit consisting of two auxiliary transistors with two diodes is introduced to actively control gate voltages and gate loop impedances of both devices in a phase-leg configuration during different switching transients. Compared to conventional gate drives, the proposed circuit has the capability of accelerating the switching speed of the phase-leg power devices and suppressing the crosstalk to below device limits. Based on Wolfspeed 1200-V SiC MOSFETs, the test results demonstrate the effectiveness of this intelligent gate drive under varying operating conditions. More importantly, the proposed intelligent gate assist circuitry is embedded into a gate drive integrated circuit, offering a simple, compact, and reliable solution for end-users to maximize benefits of SiC devices in actual power electronics applications.

Authors:
 [1];  [1];  [1];  [1];  [1]; ORCiD logo [1]
  1. The Univ. of Tennessee, Knoxville, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1399114
Grant/Contract Number:
AC05-00OR22725
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
IEEE Transactions on Power Electronics
Additional Journal Information:
Journal Volume: 32; Journal Issue: 12; Journal ID: ISSN 0885-8993
Publisher:
IEEE
Country of Publication:
United States
Language:
English
Subject:
30 DIRECT ENERGY CONVERSION; crosstalk suppression; fast switching; gate drive IC; intelligent gate drive (IGD); phase-leg configuration; silicon carbide (SiC)

Citation Formats

Zhang, Zheyu, Dix, Jeffery, Wang, Fei Fred, Blalock, Benjamin J., Costinett, Daniel, and Tolbert, Leon M.. Intelligent Gate Drive for Fast Switching and Crosstalk Suppression of SiC Devices. United States: N. p., 2017. Web. doi:10.1109/TPEL.2017.2655496.
Zhang, Zheyu, Dix, Jeffery, Wang, Fei Fred, Blalock, Benjamin J., Costinett, Daniel, & Tolbert, Leon M.. Intelligent Gate Drive for Fast Switching and Crosstalk Suppression of SiC Devices. United States. doi:10.1109/TPEL.2017.2655496.
Zhang, Zheyu, Dix, Jeffery, Wang, Fei Fred, Blalock, Benjamin J., Costinett, Daniel, and Tolbert, Leon M.. Thu . "Intelligent Gate Drive for Fast Switching and Crosstalk Suppression of SiC Devices". United States. doi:10.1109/TPEL.2017.2655496. https://www.osti.gov/servlets/purl/1399114.
@article{osti_1399114,
title = {Intelligent Gate Drive for Fast Switching and Crosstalk Suppression of SiC Devices},
author = {Zhang, Zheyu and Dix, Jeffery and Wang, Fei Fred and Blalock, Benjamin J. and Costinett, Daniel and Tolbert, Leon M.},
abstractNote = {This study presents an intelligent gate drive for silicon carbide (SiC) devices to fully utilize their potential of high switching-speed capability in a phase-leg configuration. Based on the SiC device's intrinsic properties, a gate assist circuit consisting of two auxiliary transistors with two diodes is introduced to actively control gate voltages and gate loop impedances of both devices in a phase-leg configuration during different switching transients. Compared to conventional gate drives, the proposed circuit has the capability of accelerating the switching speed of the phase-leg power devices and suppressing the crosstalk to below device limits. Based on Wolfspeed 1200-V SiC MOSFETs, the test results demonstrate the effectiveness of this intelligent gate drive under varying operating conditions. More importantly, the proposed intelligent gate assist circuitry is embedded into a gate drive integrated circuit, offering a simple, compact, and reliable solution for end-users to maximize benefits of SiC devices in actual power electronics applications.},
doi = {10.1109/TPEL.2017.2655496},
journal = {IEEE Transactions on Power Electronics},
number = 12,
volume = 32,
place = {United States},
year = {Thu Jan 19 00:00:00 EST 2017},
month = {Thu Jan 19 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:
  • A study of changes in nano-scale morphology of thin films of nano-crystalline transition metal (TM) elemental oxides, HfO{sub 2} and TiO{sub 2}, on plasma-nitrided Ge(100) substrates, and Si(100) substrates with ultra-thin (-0.8 nm) plasma-nitrided Si suboxide, SiO{sub x}, x < 2, or SiON interfacial layers is presented. Near edge X-ray absorption spectroscopy (NEXAS) has been used to determine nano-scale morphology of these films by Jahn-Teller distortion removal of band edge d-state degeneracies. These results identify a new and novel application for NEXAS based on the resonant character of the respective O K{sub 1} and N K{sub 1} edge absorptions. Thismore » paper also includes a brief discussion of the integration issues for the introduction of this Ge breakthrough into advanced semiconductor circuits and systems. This includes a comparison of nano-crystalline and non-crystalline dielectrics, as well as issues relative to metal gates.« less
  • Metalorganic remote plasma chemical vapor deposited SiO{sub 2}/Al{sub 2}O{sub 3} stacks were deposited on 6H p-type silicon SiC to fabricate a high-k gate stack SiC metal--oxide--semiconductor capacitors. Capacitance--voltage (C--V) and current--voltage (I--V) measurements were performed. C--V characteristics showed excellent properties at room and higher temperatures. Samples exhibited a slight negative flatband shift from which the net oxide charge (Q{sub ox}) was calculated. Low leakage currents were observed even at high temperatures. I--V characteristics of Al{sub 2}O{sub 3} were superior to those observed on AlN and SiO{sub 2} dielectrics on SiC. {copyright} 2001 American Institute of Physics.
  • In Kelvin Probe Force Microscopy (KPFM) electronic crosstalk can occur between the excitation signal and probe deflection signal. Here, we demonstrate how a small modification to our commercial instrument enables us to literally switch the crosstalk on and off. We study in detail the effect of crosstalk on open-loop KPFM and compare with closed-loop KPFM. We measure the pure crosstalk signal and verify that we can correct for it in the data-processing required for open-loop KPFM. We also demonstrate that open-loop KPFM results are independent of the frequency and amplitude of the excitation signal, provided that the influence of crosstalkmore » has been eliminated.« less
  • The interaction between estrogen receptor (ER) and insulin-like growth factor-1 receptor (IGF-1R) signaling pathway plays an important role in proliferation of and resistance to endocrine therapy to estrogen dependent cancers. Estrogen (E2) upregulates the expression of components of IGF-1 system and induces the downstream of mitogenic signaling cascades via phosphorylation of insulin receptor substrate-1 (IRS-1). In the present study, we evaluated the xenoestrogenic effect of bisphenol A (BPA) and antiproliferative activity of genistein (GEN) in accordance with the influence on this crosstalk. BPA was determined to affect this crosstalk by upregulating mRNA expressions of ERα and IGF-1R and inducing phosphorylationmore » of IRS-1 and Akt in protein level in BG-1 ovarian cancer cells as E2 did. In the mouse model xenografted with BG-1 cells, BPA significantly increased a tumor burden of mice and expressions of ERα, pIRS-1, and cyclin D1 in tumor mass compared to vehicle, indicating that BPA induces ovarian cancer growth by promoting the crosstalk between ER and IGF-1R signals. On the other hand, GEN effectively reversed estrogenicity of BPA by reversing mRNA and protein expressions of ERα, IGF-1R, pIRS-1, and pAkt induced by BPA in cellular model and also significantly decreased tumor growth and in vivo expressions of ERα, pIRS-1, and pAkt in xenografted mouse model. Also, GEN was confirmed to have an antiproliferative effect by inducing apoptotic signaling cascades. Taken together, these results suggest that GEN effectively reversed the increased proliferation of BG-1 ovarian cancer by suppressing the crosstalk between ERα and IGF-1R signaling pathways upregulated by BPA or E2.« less
  • A series of dual polymer electrochromic devices (ECDs) based on 12 complementary pairs of conducting polymer films have been constructed using 3,4-ethylenedioxythiophene-containing conducting polymers. Poly[3,6-bis(2-(3,4-ethylenedioxythiophene))-N-methylcarbazole] (PBEDOT-NCH{sub 3}Cz), poly[3,6-bis(2-(3,4-ethylenedioxythiophene))-N-eicosylcarbazole] (PBEDOT-NC{sub 20}H{sub 41}Cz), and poly[4,4{prime}-bis(2-(3,4-ethylenedioxythiophene))biphenyl] (PBEDOT-BP) were utilized as anodically coloring polymers that electrochemically switch between an oxidized deep blue absorptive state and a transmissive (orange or yellow) reduced state. Poly(3,4-ethylenedioxythiophene)(PEDOT) and its alkyl derivatives (PEDOT-C{sub 14}H{sub 29} and PEDOT-C{sub 16}H{sub 33}) have been used as high-contrast cathodically coloring polymers that switch between a deep blue absorptive state in the reduced form and a sky blue, highly transmissive state in the oxidizedmore » form. The dual polymer ECDs were constructed by separating complementary pairs of EC polymer films, deposited on ITO glass, with a gel electrolyte composed of a lithium salt and plasticized poly(methyl methacrylate) (PMMA). Device contrast ratios, measured as {Delta}%T, ranged from 27% to 63%, and subsecond switching times for full color change were achieved. These devices were found to exhibit extremely high coloration efficiencies of up to 1400 cm{sup 2}/C over narrow (ca. 100 nm) wavelength ranges and to retain up to 60% of their optical response after 10,000 deep, double potential steps, rendering them useful for EC applications.« less