skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Priors on the effective dark energy equation of state in scalar-tensor theories

; ; ;
Publication Date:
Sponsoring Org.:
OSTI Identifier:
Grant/Contract Number:
FG02-13ER41958; SC0009924
Resource Type:
Journal Article: Publisher's Accepted Manuscript
Journal Name:
Physical Review D
Additional Journal Information:
Journal Volume: 96; Journal Issue: 8; Related Information: CHORUS Timestamp: 2017-10-11 10:01:31; Journal ID: ISSN 2470-0010
American Physical Society
Country of Publication:
United States

Citation Formats

Raveri, Marco, Bull, Philip, Silvestri, Alessandra, and Pogosian, Levon. Priors on the effective dark energy equation of state in scalar-tensor theories. United States: N. p., 2017. Web. doi:10.1103/PhysRevD.96.083509.
Raveri, Marco, Bull, Philip, Silvestri, Alessandra, & Pogosian, Levon. Priors on the effective dark energy equation of state in scalar-tensor theories. United States. doi:10.1103/PhysRevD.96.083509.
Raveri, Marco, Bull, Philip, Silvestri, Alessandra, and Pogosian, Levon. Wed . "Priors on the effective dark energy equation of state in scalar-tensor theories". United States. doi:10.1103/PhysRevD.96.083509.
title = {Priors on the effective dark energy equation of state in scalar-tensor theories},
author = {Raveri, Marco and Bull, Philip and Silvestri, Alessandra and Pogosian, Levon},
abstractNote = {},
doi = {10.1103/PhysRevD.96.083509},
journal = {Physical Review D},
number = 8,
volume = 96,
place = {United States},
year = {Wed Oct 11 00:00:00 EDT 2017},
month = {Wed Oct 11 00:00:00 EDT 2017}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on October 11, 2018
Publisher's Accepted Manuscript

Citation Metrics:
Cited by: 3works
Citation information provided by
Web of Science

Save / Share:
  • In the Horndeski's most general scalar-tensor theories with second-order field equations, we derive the conditions for the avoidance of ghosts and Laplacian instabilities associated with scalar, tensor, and vector perturbations in the presence of two perfect fluids on the flat Friedmann-Lemaître-Robertson-Walker (FLRW) background. Our general results are useful for the construction of theoretically consistent models of dark energy. We apply our formulas to extended Galileon models in which a tracker solution with an equation of state smaller than -1 is present. We clarify the allowed parameter space in which the ghosts and Laplacian instabilities are absent and we numerically confirmmore » that such models are indeed cosmologically viable.« less
  • The dynamics of expansion and large scale structure formation in the multicomponent Universe with dark energy modeled by the minimally coupled scalar field with generalized linear barotropic equation of state are analyzed. It is shown that the past dynamics of expansion and future of the Universe - eternal accelerated expansion or turnaround and collapse - are completely defined by the current energy density of a scalar field and relation between its current and early equation of state parameters. The clustering properties of such models of dark energy and their imprints in the power spectrum of matter density perturbations depend onmore » the same relation and, additionally, on the 'effective sound speed' of a scalar field, defined by its Lagrangian. It is concluded that such scalar fields with different values of these parameters are distinguishable in principle. This gives the possibility to constrain them by confronting the theoretical predictions with the corresponding observational data. For that we have used the 7-year Wilkinson Microwave Anisotropy Probe data on cosmic microwave background anisotropies, the Union2 data set on Supernovae Ia and the seventh data release of the Sloan Digital Sky Survey data on luminous red galaxies space distribution. Using the Markov Chain Monte Carlo technique the marginalized posterior and mean likelihood distributions are computed for the scalar fields with two different Lagrangians: Klein-Gordon and Dirac-Born-Infeld ones. The properties of such scalar field models of dark energy with best fitting parameters and uncertainties of their determination are also analyzed in the paper.« less
  • We constrain the parameters of dynamical dark energy in the form of a classical or tachyonic scalar field with barotropic equation of state jointly with other cosmological parameters using the following datasets: the CMB power spectra from WMAP7, the baryon acoustic oscillations in the space distribution of galaxies from SDSS DR7, the power spectrum of luminous red galaxies from SDSS DR7 and the light curves of SN Ia from 2 different compilations: Union2 (SALT2 light curve fitting) and SDSS (SALT2 and MLCS2k2 light curve fittings). It has been found that the initial value of dark energy equation of state parametermore » is constrained very weakly by most of the data while the other cosmological parameters are well constrained: their likelihoods and posteriors are similar, their forms are close to Gaussian (or half-Gaussian) and the confidence ranges are narrow. The most reliable determinations of the best-fit value and 1σ confidence range for the initial value of the dark energy equation of state parameter are obtained from the combined datasets including SN Ia data from the full SDSS compilation with MLCS2k2 light curve fitting. In all such cases the best-fit value of this parameter is lower than the value of corresponding parameter for current epoch. Such dark energy loses its repulsive properties and in future the expansion of the Universe changes into contraction. We also perform a forecast for the Planck mock data and show that they narrow significantly the confidence ranges of cosmological parameters values, moreover, their combination with SN SDSS compilation with MLCS2k2 light curve fitting may exclude the fields with initial equation of state parameter > −0.1 at 2σ confidence level.« less
  • We study the impact of a modified expansion rate on the dark matter relic abundance in a class of scalar-tensor theories. The scalar-tensor theories we consider are motivated from string theory constructions, which have conformal as well as disformally coupled matter to the scalar. We investigate the effects of such a conformal coupling to the dark matter relic abundance for a wide range of initial conditions, masses and cross-sections. We find that exploiting all possible initial conditions, the annihilation cross-section required to satisfy the dark matter content can differ from the thermal average cross-section in the standard case. We alsomore » study the expansion rate in the disformal case and find that physically relevant solutions require a nontrivial relation between the conformal and disformal functions. We study the effects of the disformal coupling in an explicit example where the disformal function is quadratic.« less
  • Most existing theories of dark energy and/or modified gravity, involving a scalar degree of freedom, can be conveniently described within the framework of the Effective Theory of Dark Energy, based on the unitary gauge where the scalar field is uniform. We extend this effective approach by allowing the Lagrangian in unitary gauge to depend on the time derivative of the lapse function. Although this dependence generically signals the presence of an extra scalar degree of freedom, theories that contain only one propagating scalar degree of freedom, in addition to the usual tensor modes, can be constructed by requiring the initialmore » Lagrangian to be degenerate. Starting from a general quadratic action, we derive the dispersion relations for the linear perturbations around Minkowski and a cosmological background. Our analysis directly applies to the recently introduced Degenerate Higher-Order Scalar-Tensor (DHOST) theories. For these theories, we find that one cannot recover a Poisson-like equation in the static linear regime except for the subclass that includes the Horndeski and so-called 'beyond Horndeski' theories. We also discuss Lorentz-breaking models inspired by Horava gravity.« less