skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Enhancing the physical modeling capability of open-source MFIX-DEM software for handling particle size polydispersity: Implementation and validation

Authors:
; ; ; ;
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1398581
Grant/Contract Number:
FE0026393; AC02-05CH11231
Resource Type:
Journal Article: Publisher's Accepted Manuscript
Journal Name:
Powder Technology
Additional Journal Information:
Journal Volume: 317; Journal Issue: C; Related Information: CHORUS Timestamp: 2018-01-08 15:38:01; Journal ID: ISSN 0032-5910
Publisher:
Elsevier
Country of Publication:
Netherlands
Language:
English

Citation Formats

Chen, Shaohua, Adepu, Manogna, Emady, Heather, Jiao, Yang, and Gel, Aytekin. Enhancing the physical modeling capability of open-source MFIX-DEM software for handling particle size polydispersity: Implementation and validation. Netherlands: N. p., 2017. Web. doi:10.1016/j.powtec.2017.04.055.
Chen, Shaohua, Adepu, Manogna, Emady, Heather, Jiao, Yang, & Gel, Aytekin. Enhancing the physical modeling capability of open-source MFIX-DEM software for handling particle size polydispersity: Implementation and validation. Netherlands. doi:10.1016/j.powtec.2017.04.055.
Chen, Shaohua, Adepu, Manogna, Emady, Heather, Jiao, Yang, and Gel, Aytekin. Sat . "Enhancing the physical modeling capability of open-source MFIX-DEM software for handling particle size polydispersity: Implementation and validation". Netherlands. doi:10.1016/j.powtec.2017.04.055.
@article{osti_1398581,
title = {Enhancing the physical modeling capability of open-source MFIX-DEM software for handling particle size polydispersity: Implementation and validation},
author = {Chen, Shaohua and Adepu, Manogna and Emady, Heather and Jiao, Yang and Gel, Aytekin},
abstractNote = {},
doi = {10.1016/j.powtec.2017.04.055},
journal = {Powder Technology},
number = C,
volume = 317,
place = {Netherlands},
year = {Sat Jul 01 00:00:00 EDT 2017},
month = {Sat Jul 01 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record at 10.1016/j.powtec.2017.04.055

Citation Metrics:
Cited by: 1work
Citation information provided by
Web of Science

Save / Share:
  • With rapid advancements in computer hardware and numerical algorithms, computational fluid dynamics (CFD) has been increasingly employed as a useful tool for investigating the complex hydrodynamics inherent in multiphase flows. An important step during the development of a CFD model and prior to its application is conducting careful and comprehensive verification and validation studies. Accordingly, efforts to verify and validate the open-source MFIX-DEM software, which can be used for simulating the gas solids flow using an Eulerian reference frame for the continuum fluid and a Lagrangian discrete framework (Discrete Element Method) for the particles, have been made at the Nationalmore » Energy Technology Laboratory (NETL). In part I of this paper, extensive verification studies were presented and in this part, detailed validation studies of MFIX-DEM are presented. A series of test cases covering a range of gas solids flow applications were conducted. In particular the numerical results for the random packing of a binary particle mixture, the repose angle of a sandpile formed during a side charge process, velocity, granular temperature, and voidage profiles from a bounded granular shear flow, lateral voidage and velocity profiles from a monodisperse bubbling fluidized bed, lateral velocity profiles from a spouted bed, and the dynamics of segregation of a binary mixture in a bubbling bed were compared with available experimental data, and in some instances with empirical correlations. In addition, sensitivity studies were conducted for various parameters to quantify the error in the numerical simulation.« less
  • With rapid advancements in computer hardware and numerical algorithms, computational fluid dynamics (CFD) has been increasingly employed as a useful tool for investigating the complex hydrodynamics inherent in multiphase flows. An important step during the development of a CFD model and prior to its application is conducting careful and comprehensive verification and validation studies. Accordingly, efforts to verify and validate the open-source MFIX-DEM software, which can be used for simulating the gas–solids flow using an Eulerian reference frame for the continuum fluid and a Lagrangian discrete framework (Discrete Element Method) for the particles, have been made at the National Energymore » Technology Laboratory (NETL). In part I of this paper, extensive verification studies were presented and in this part, detailed validation studies of MFIX-DEM are presented. A series of test cases covering a range of gas–solids flow applications were conducted. In particular the numerical results for the random packing of a binary particle mixture, the repose angle of a sandpile formed during a side charge process, velocity, granular temperature, and voidage profiles from a bounded granular shear flow, lateral voidage and velocity profiles from a monodisperse bubbling fluidized bed, lateral velocity profiles from a spouted bed, and the dynamics of segregation of a binary mixture in a bubbling bed were compared with available experimental data, and in some instances with empirical correlations. In addition, sensitivity studies were conducted for various parameters to quantify the error in the numerical simulation.« less
  • With rapid advancements in computer hardware, it is now possible to perform large simulations of granular flows using the Discrete Element Method (DEM). As a result, solids are increasingly treated in a discrete Lagrangian fashion in the gas solids flow community. In this paper, the open-source MFIX-DEM software is described that can be used for simulating the gas solids flow using an Eulerian reference frame for the continuum fluid and a Lagrangian discrete framework (Discrete Element Method) for the particles. This method is referred to as the continuum discrete method (CDM) to clearly make a distinction between the ambiguity ofmore » using a Lagrangian or Eulerian reference for either continuum or discrete formulations. This freely available CDM code for gas solids flows can accelerate the research in computational gas solids flows and establish a baseline that can lead to better closures for the continuum modeling (or traditionally referred to as two fluid model) of gas solids flows. In this paper, a series of verification cases is employed which tests the different aspects of the code in a systematic fashion by exploring specific physics in gas solids flows before exercising the fully coupled solution on simple canonical problems. It is critical to have an extensively verified code as the physics is complex with highly-nonlinear coupling, and it is difficult to ascertain the accuracy of the results without rigorous verification. These series of verification tests set the stage not only for rigorous validation studies (performed in part II of this paper) but also serve as a procedure for testing any new developments that couple continuum and discrete formulations for gas solids flows.« less
  • With rapid advancements in computer hardware, it is now possible to perform large simulations of granular flows using the Discrete Element Method (DEM). As a result, solids are increasingly treated in a discrete Lagrangian fashion in the gas–solids flow community. In this paper, the open-source MFIX-DEM software is described that can be used for simulating the gas–solids flow using an Eulerian reference frame for the continuum fluid and a Lagrangian discrete framework (Discrete Element Method) for the particles. This method is referred to as the continuum discrete method (CDM) to clearly make a distinction between the ambiguity of using amore » Lagrangian or Eulerian reference for either continuum or discrete formulations. This freely available CDM code for gas–solids flows can accelerate the research in computational gas–solids flows and establish a baseline that can lead to better closures for the continuum modeling (or traditionally referred to as two fluid model) of gas–solids flows. In this paper, a series of verification cases is employed which tests the different aspects of the code in a systematic fashion by exploring specific physics in gas–solids flows before exercising the fully coupled solution on simple canonical problems. It is critical to have an extensively verified code as the physics is complex with highly-nonlinear coupling, and it is difficult to ascertain the accuracy of the results without rigorous verification. These series of verification tests set the stage not only for rigorous validation studies (performed in part II of this paper) but also serve as a procedure for testing any new developments that couple continuum and discrete formulations for gas–solids flows.« less
  • With rapid advancements in computer hardware, it is now possible to perform large simulations of granular flows using the Discrete Element Method (DEM). As a result, solids are increasingly treated in a discrete Lagrangian fashion in the gas–solids flow community. In this paper, the open-source MFIX-DEM software is described that can be used for simulating the gas–solids flow using an Eulerian reference frame for the continuum fluid and a Lagrangian discrete framework (Discrete Element Method) for the particles. This method is referred to as the continuum discrete method (CDM) to clearly make a distinction between the ambiguity of using amore » Lagrangian or Eulerian reference for either continuum or discrete formulations. This freely available CDM code for gas–solids flows can accelerate the research in computational gas–solids flows and establish a baseline that can lead to better closures for the continuum modeling (or traditionally referred to as two fluid model) of gas–solids flows. In this paper, a series of verification cases is employed which tests the different aspects of the code in a systematic fashion by exploring specific physics in gas–solids flows before exercising the fully coupled solution on simple canonical problems. It is critical to have an extensively verified code as the physics is complex with highly-nonlinear coupling, and it is difficult to ascertain the accuracy of the results without rigorous verification. These series of verification tests set the stage not only for rigorous validation studies (performed in part II of this paper) but also serve as a procedure for testing any new developments that couple continuum and discrete formulations for gas–solids flows.« less