skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Planck 2015 results: XXI. The integrated Sachs-Wolfe effect

Abstract

Here, this paper presents a study of the integrated Sachs-Wolfe (ISW) effect from the Planck 2015 temperature and polarization data release. This secondary cosmic microwave background (CMB) anisotropy caused by the large-scale time-evolving gravitational potential is probed from different perspectives. The CMB is cross-correlated with different large-scale structure (LSS) tracers: radio sources from the NVSS catalogue; galaxies from the optical SDSS and the infrared WISE surveys; and the Planck 2015 convergence lensing map. The joint cross-correlation of the CMB with the tracers yields a detection at 4σ where most of the signal-to-noise is due to the Planck lensing and the NVSS radio catalogue. In fact, the ISW effect is detected from the Planck data only at ≈3σ (through the ISW-lensing bispectrum), which is similar to the detection level achieved by combining the cross-correlation signal coming from all the galaxy catalogues mentioned above. We study the ability of the ISW effect to place constraints on the dark-energy parameters; in particular, we show that Ω Λ is detected at more than 3σ. This cross-correlation analysis is performed only with the Planck temperature data, since the polarization scales available in the 2015 release do not permit significant improvement of the CMB-LSS cross-correlation detectability.more » Nevertheless, the Planck polarization data are used to study the anomalously large ISW signal previously reported through the aperture photometry on stacked CMB features at the locations of known superclusters and supervoids, which is in conflict with ΛCDM expectations. We find that the current Planck polarization data do not exclude that this signal could be caused by the ISW effect. In addition, the stacking of the Planck lensing map on the locations of superstructures exhibits a positive cross-correlation with these large-scale structures. Finally, we have improved our previous reconstruction of the ISW temperature fluctuations by combining the information encoded in all the previously mentioned LSS tracers. In particular, we construct a map of the ISW secondary anisotropies and the corresponding uncertainties map, obtained from simulations. Lastly, we also explore the reconstruction of the ISW anisotropies caused by the large-scale structure traced by the 2MASS Photometric Redshift Survey (2MPZ) by directly inverting the density field into the gravitational potential field.« less

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1398416
Grant/Contract Number:
AC02-05CH11231
Resource Type:
Journal Article: Accepted Manuscript
Journal Name:
Astronomy and Astrophysics
Additional Journal Information:
Journal Volume: 594; Journal ID: ISSN 0004-6361
Publisher:
EDP Sciences
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; cosmology: observations; cosmic background radiation; large-scale structure of Universe; dark energy; galaxies: clusters: general; methods: data analysis

Citation Formats

Ade, P. A. R., Aghanim, N., Arnaud, M., Ashdown, M., Aumont, J., Baccigalupi, C., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Battaner, E., Benabed, K., Benoît, A., Benoit-Lévy, A., Bernard, J. -P., Bersanelli, M., Bielewicz, P., Bock, J. J., Bonaldi, A., Bonavera, L., Bond, J. R., Borrill, J., Bouchet, F. R., Bucher, M., Burigana, C., Butler, R. C., Calabrese, E., Cardoso, J. -F., Casaponsa, B., Catalano, A., Challinor, A., Chamballu, A., Chiang, H. C., Christensen, P. R., Church, S., Clements, D. L., Colombi, S., Colombo, L. P. L., Combet, C., Couchot, F., Coulais, A., Crill, B. P., Curto, A., Cuttaia, F., Danese, L., Davies, R. D., Davis, R. J., de Bernardis, P., de Rosa, A., de Zotti, G., Delabrouille, J., Désert, F. -X., Diego, J. M., Dole, H., Donzelli, S., Doré, O., Douspis, M., Ducout, A., Dupac, X., Efstathiou, G., Elsner, F., Enßlin, T. A., Eriksen, H. K., Fergusson, J., Fernandez-Cobos, R., Finelli, F., Forni, O., Frailis, M., Fraisse, A. A., Franceschi, E., Frejsel, A., Galeotta, S., Galli, S., Ganga, K., Génova-Santos, R. T., Giard, M., Giraud-Héraud, Y., Gjerløw, E., González-Nuevo, J., Górski, K. M., Gratton, S., Gregorio, A., Gruppuso, A., Gudmundsson, J. E., Hansen, F. K., Hanson, D., Harrison, D. L., Henrot-Versillé, S., Hernández-Monteagudo, C., Herranz, D., Hildebrandt, S. R., Hivon, E., Hobson, M., Holmes, W. A., Hornstrup, A., Hovest, W., Huffenberger, K. M., Hurier, G., Ilić, S., Jaffe, A. H., Jaffe, T. R., Jones, W. C., Juvela, M., Keihänen, E., Keskitalo, R., Kisner, T. S., Kneissl, R., Knoche, J., Kunz, M., Kurki-Suonio, H., Lagache, G., Lähteenmäki, A., Lamarre, J. -M., Langer, M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Leonardi, R., Lesgourgues, J., Levrier, F., Liguori, M., Lilje, P. B., Linden-Vørnle, M., López-Caniego, M., Lubin, P. M., Ma, Y. -Z., Macías-Pérez, J. F., Maggio, G., Maino, D., Mandolesi, N., Mangilli, A., Marcos-Caballero, A., Maris, M., Martin, P. G., Martínez-González, E., Masi, S., Matarrese, S., McGehee, P., Meinhold, P. R., Melchiorri, A., Mendes, L., Mennella, A., Migliaccio, M., Mitra, S., Miville-Deschênes, M. -A., Moneti, A., Montier, L., Morgante, G., Mortlock, D., Moss, A., Munshi, D., Murphy, J. A., Naselsky, P., Nati, F., Natoli, P., Netterfield, C. B., Nørgaard-Nielsen, H. U., Noviello, F., Novikov, D., Novikov, I., Oxborrow, C. A., Paci, F., Pagano, L., Pajot, F., Paoletti, D., Pasian, F., Patanchon, G., Perdereau, O., Perotto, L., Perrotta, F., Pettorino, V., Piacentini, F., Piat, M., Pierpaoli, E., Pietrobon, D., Plaszczynski, S., Pointecouteau, E., Polenta, G., Popa, L., Pratt, G. W., Prézeau, G., Prunet, S., Puget, J. -L., Rachen, J. P., Reach, W. T., Rebolo, R., Reinecke, M., Remazeilles, M., Renault, C., Renzi, A., Ristorcelli, I., Rocha, G., Rosset, C., Rossetti, M., Roudier, G., Rubiño-Martín, J. A., Rusholme, B., Sandri, M., Santos, D., Savelainen, M., Savini, G., Schaefer, B. M., Scott, D., Seiffert, M. D., Shellard, E. P. S., Spencer, L. D., Stolyarov, V., Stompor, R., Sudiwala, R., Sunyaev, R., Sutton, D., Suur-Uski, A. -S., Sygnet, J. -F., Tauber, J. A., Terenzi, L., Toffolatti, L., Tomasi, M., Tristram, M., Tucci, M., Tuovinen, J., Valenziano, L., Valiviita, J., Van Tent, F., Vielva, P., Villa, F., Wade, L. A., Wandelt, B. D., Wehus, I. K., Yvon, D., Zacchei, A., and Zonca, A. Planck 2015 results: XXI. The integrated Sachs-Wolfe effect. United States: N. p., 2016. Web. doi:10.1051/0004-6361/201525831.
Ade, P. A. R., Aghanim, N., Arnaud, M., Ashdown, M., Aumont, J., Baccigalupi, C., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Battaner, E., Benabed, K., Benoît, A., Benoit-Lévy, A., Bernard, J. -P., Bersanelli, M., Bielewicz, P., Bock, J. J., Bonaldi, A., Bonavera, L., Bond, J. R., Borrill, J., Bouchet, F. R., Bucher, M., Burigana, C., Butler, R. C., Calabrese, E., Cardoso, J. -F., Casaponsa, B., Catalano, A., Challinor, A., Chamballu, A., Chiang, H. C., Christensen, P. R., Church, S., Clements, D. L., Colombi, S., Colombo, L. P. L., Combet, C., Couchot, F., Coulais, A., Crill, B. P., Curto, A., Cuttaia, F., Danese, L., Davies, R. D., Davis, R. J., de Bernardis, P., de Rosa, A., de Zotti, G., Delabrouille, J., Désert, F. -X., Diego, J. M., Dole, H., Donzelli, S., Doré, O., Douspis, M., Ducout, A., Dupac, X., Efstathiou, G., Elsner, F., Enßlin, T. A., Eriksen, H. K., Fergusson, J., Fernandez-Cobos, R., Finelli, F., Forni, O., Frailis, M., Fraisse, A. A., Franceschi, E., Frejsel, A., Galeotta, S., Galli, S., Ganga, K., Génova-Santos, R. T., Giard, M., Giraud-Héraud, Y., Gjerløw, E., González-Nuevo, J., Górski, K. M., Gratton, S., Gregorio, A., Gruppuso, A., Gudmundsson, J. E., Hansen, F. K., Hanson, D., Harrison, D. L., Henrot-Versillé, S., Hernández-Monteagudo, C., Herranz, D., Hildebrandt, S. R., Hivon, E., Hobson, M., Holmes, W. A., Hornstrup, A., Hovest, W., Huffenberger, K. M., Hurier, G., Ilić, S., Jaffe, A. H., Jaffe, T. R., Jones, W. C., Juvela, M., Keihänen, E., Keskitalo, R., Kisner, T. S., Kneissl, R., Knoche, J., Kunz, M., Kurki-Suonio, H., Lagache, G., Lähteenmäki, A., Lamarre, J. -M., Langer, M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Leonardi, R., Lesgourgues, J., Levrier, F., Liguori, M., Lilje, P. B., Linden-Vørnle, M., López-Caniego, M., Lubin, P. M., Ma, Y. -Z., Macías-Pérez, J. F., Maggio, G., Maino, D., Mandolesi, N., Mangilli, A., Marcos-Caballero, A., Maris, M., Martin, P. G., Martínez-González, E., Masi, S., Matarrese, S., McGehee, P., Meinhold, P. R., Melchiorri, A., Mendes, L., Mennella, A., Migliaccio, M., Mitra, S., Miville-Deschênes, M. -A., Moneti, A., Montier, L., Morgante, G., Mortlock, D., Moss, A., Munshi, D., Murphy, J. A., Naselsky, P., Nati, F., Natoli, P., Netterfield, C. B., Nørgaard-Nielsen, H. U., Noviello, F., Novikov, D., Novikov, I., Oxborrow, C. A., Paci, F., Pagano, L., Pajot, F., Paoletti, D., Pasian, F., Patanchon, G., Perdereau, O., Perotto, L., Perrotta, F., Pettorino, V., Piacentini, F., Piat, M., Pierpaoli, E., Pietrobon, D., Plaszczynski, S., Pointecouteau, E., Polenta, G., Popa, L., Pratt, G. W., Prézeau, G., Prunet, S., Puget, J. -L., Rachen, J. P., Reach, W. T., Rebolo, R., Reinecke, M., Remazeilles, M., Renault, C., Renzi, A., Ristorcelli, I., Rocha, G., Rosset, C., Rossetti, M., Roudier, G., Rubiño-Martín, J. A., Rusholme, B., Sandri, M., Santos, D., Savelainen, M., Savini, G., Schaefer, B. M., Scott, D., Seiffert, M. D., Shellard, E. P. S., Spencer, L. D., Stolyarov, V., Stompor, R., Sudiwala, R., Sunyaev, R., Sutton, D., Suur-Uski, A. -S., Sygnet, J. -F., Tauber, J. A., Terenzi, L., Toffolatti, L., Tomasi, M., Tristram, M., Tucci, M., Tuovinen, J., Valenziano, L., Valiviita, J., Van Tent, F., Vielva, P., Villa, F., Wade, L. A., Wandelt, B. D., Wehus, I. K., Yvon, D., Zacchei, A., & Zonca, A. Planck 2015 results: XXI. The integrated Sachs-Wolfe effect. United States. doi:10.1051/0004-6361/201525831.
Ade, P. A. R., Aghanim, N., Arnaud, M., Ashdown, M., Aumont, J., Baccigalupi, C., Banday, A. J., Barreiro, R. B., Bartolo, N., Basak, S., Battaner, E., Benabed, K., Benoît, A., Benoit-Lévy, A., Bernard, J. -P., Bersanelli, M., Bielewicz, P., Bock, J. J., Bonaldi, A., Bonavera, L., Bond, J. R., Borrill, J., Bouchet, F. R., Bucher, M., Burigana, C., Butler, R. C., Calabrese, E., Cardoso, J. -F., Casaponsa, B., Catalano, A., Challinor, A., Chamballu, A., Chiang, H. C., Christensen, P. R., Church, S., Clements, D. L., Colombi, S., Colombo, L. P. L., Combet, C., Couchot, F., Coulais, A., Crill, B. P., Curto, A., Cuttaia, F., Danese, L., Davies, R. D., Davis, R. J., de Bernardis, P., de Rosa, A., de Zotti, G., Delabrouille, J., Désert, F. -X., Diego, J. M., Dole, H., Donzelli, S., Doré, O., Douspis, M., Ducout, A., Dupac, X., Efstathiou, G., Elsner, F., Enßlin, T. A., Eriksen, H. K., Fergusson, J., Fernandez-Cobos, R., Finelli, F., Forni, O., Frailis, M., Fraisse, A. A., Franceschi, E., Frejsel, A., Galeotta, S., Galli, S., Ganga, K., Génova-Santos, R. T., Giard, M., Giraud-Héraud, Y., Gjerløw, E., González-Nuevo, J., Górski, K. M., Gratton, S., Gregorio, A., Gruppuso, A., Gudmundsson, J. E., Hansen, F. K., Hanson, D., Harrison, D. L., Henrot-Versillé, S., Hernández-Monteagudo, C., Herranz, D., Hildebrandt, S. R., Hivon, E., Hobson, M., Holmes, W. A., Hornstrup, A., Hovest, W., Huffenberger, K. M., Hurier, G., Ilić, S., Jaffe, A. H., Jaffe, T. R., Jones, W. C., Juvela, M., Keihänen, E., Keskitalo, R., Kisner, T. S., Kneissl, R., Knoche, J., Kunz, M., Kurki-Suonio, H., Lagache, G., Lähteenmäki, A., Lamarre, J. -M., Langer, M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Leonardi, R., Lesgourgues, J., Levrier, F., Liguori, M., Lilje, P. B., Linden-Vørnle, M., López-Caniego, M., Lubin, P. M., Ma, Y. -Z., Macías-Pérez, J. F., Maggio, G., Maino, D., Mandolesi, N., Mangilli, A., Marcos-Caballero, A., Maris, M., Martin, P. G., Martínez-González, E., Masi, S., Matarrese, S., McGehee, P., Meinhold, P. R., Melchiorri, A., Mendes, L., Mennella, A., Migliaccio, M., Mitra, S., Miville-Deschênes, M. -A., Moneti, A., Montier, L., Morgante, G., Mortlock, D., Moss, A., Munshi, D., Murphy, J. A., Naselsky, P., Nati, F., Natoli, P., Netterfield, C. B., Nørgaard-Nielsen, H. U., Noviello, F., Novikov, D., Novikov, I., Oxborrow, C. A., Paci, F., Pagano, L., Pajot, F., Paoletti, D., Pasian, F., Patanchon, G., Perdereau, O., Perotto, L., Perrotta, F., Pettorino, V., Piacentini, F., Piat, M., Pierpaoli, E., Pietrobon, D., Plaszczynski, S., Pointecouteau, E., Polenta, G., Popa, L., Pratt, G. W., Prézeau, G., Prunet, S., Puget, J. -L., Rachen, J. P., Reach, W. T., Rebolo, R., Reinecke, M., Remazeilles, M., Renault, C., Renzi, A., Ristorcelli, I., Rocha, G., Rosset, C., Rossetti, M., Roudier, G., Rubiño-Martín, J. A., Rusholme, B., Sandri, M., Santos, D., Savelainen, M., Savini, G., Schaefer, B. M., Scott, D., Seiffert, M. D., Shellard, E. P. S., Spencer, L. D., Stolyarov, V., Stompor, R., Sudiwala, R., Sunyaev, R., Sutton, D., Suur-Uski, A. -S., Sygnet, J. -F., Tauber, J. A., Terenzi, L., Toffolatti, L., Tomasi, M., Tristram, M., Tucci, M., Tuovinen, J., Valenziano, L., Valiviita, J., Van Tent, F., Vielva, P., Villa, F., Wade, L. A., Wandelt, B. D., Wehus, I. K., Yvon, D., Zacchei, A., and Zonca, A. 2016. "Planck 2015 results: XXI. The integrated Sachs-Wolfe effect". United States. doi:10.1051/0004-6361/201525831. https://www.osti.gov/servlets/purl/1398416.
@article{osti_1398416,
title = {Planck 2015 results: XXI. The integrated Sachs-Wolfe effect},
author = {Ade, P. A. R. and Aghanim, N. and Arnaud, M. and Ashdown, M. and Aumont, J. and Baccigalupi, C. and Banday, A. J. and Barreiro, R. B. and Bartolo, N. and Basak, S. and Battaner, E. and Benabed, K. and Benoît, A. and Benoit-Lévy, A. and Bernard, J. -P. and Bersanelli, M. and Bielewicz, P. and Bock, J. J. and Bonaldi, A. and Bonavera, L. and Bond, J. R. and Borrill, J. and Bouchet, F. R. and Bucher, M. and Burigana, C. and Butler, R. C. and Calabrese, E. and Cardoso, J. -F. and Casaponsa, B. and Catalano, A. and Challinor, A. and Chamballu, A. and Chiang, H. C. and Christensen, P. R. and Church, S. and Clements, D. L. and Colombi, S. and Colombo, L. P. L. and Combet, C. and Couchot, F. and Coulais, A. and Crill, B. P. and Curto, A. and Cuttaia, F. and Danese, L. and Davies, R. D. and Davis, R. J. and de Bernardis, P. and de Rosa, A. and de Zotti, G. and Delabrouille, J. and Désert, F. -X. and Diego, J. M. and Dole, H. and Donzelli, S. and Doré, O. and Douspis, M. and Ducout, A. and Dupac, X. and Efstathiou, G. and Elsner, F. and Enßlin, T. A. and Eriksen, H. K. and Fergusson, J. and Fernandez-Cobos, R. and Finelli, F. and Forni, O. and Frailis, M. and Fraisse, A. A. and Franceschi, E. and Frejsel, A. and Galeotta, S. and Galli, S. and Ganga, K. and Génova-Santos, R. T. and Giard, M. and Giraud-Héraud, Y. and Gjerløw, E. and González-Nuevo, J. and Górski, K. M. and Gratton, S. and Gregorio, A. and Gruppuso, A. and Gudmundsson, J. E. and Hansen, F. K. and Hanson, D. and Harrison, D. L. and Henrot-Versillé, S. and Hernández-Monteagudo, C. and Herranz, D. and Hildebrandt, S. R. and Hivon, E. and Hobson, M. and Holmes, W. A. and Hornstrup, A. and Hovest, W. and Huffenberger, K. M. and Hurier, G. and Ilić, S. and Jaffe, A. H. and Jaffe, T. R. and Jones, W. C. and Juvela, M. and Keihänen, E. and Keskitalo, R. and Kisner, T. S. and Kneissl, R. and Knoche, J. and Kunz, M. and Kurki-Suonio, H. and Lagache, G. and Lähteenmäki, A. and Lamarre, J. -M. and Langer, M. and Lasenby, A. and Lattanzi, M. and Lawrence, C. R. and Leonardi, R. and Lesgourgues, J. and Levrier, F. and Liguori, M. and Lilje, P. B. and Linden-Vørnle, M. and López-Caniego, M. and Lubin, P. M. and Ma, Y. -Z. and Macías-Pérez, J. F. and Maggio, G. and Maino, D. and Mandolesi, N. and Mangilli, A. and Marcos-Caballero, A. and Maris, M. and Martin, P. G. and Martínez-González, E. and Masi, S. and Matarrese, S. and McGehee, P. and Meinhold, P. R. and Melchiorri, A. and Mendes, L. and Mennella, A. and Migliaccio, M. and Mitra, S. and Miville-Deschênes, M. -A. and Moneti, A. and Montier, L. and Morgante, G. and Mortlock, D. and Moss, A. and Munshi, D. and Murphy, J. A. and Naselsky, P. and Nati, F. and Natoli, P. and Netterfield, C. B. and Nørgaard-Nielsen, H. U. and Noviello, F. and Novikov, D. and Novikov, I. and Oxborrow, C. A. and Paci, F. and Pagano, L. and Pajot, F. and Paoletti, D. and Pasian, F. and Patanchon, G. and Perdereau, O. and Perotto, L. and Perrotta, F. and Pettorino, V. and Piacentini, F. and Piat, M. and Pierpaoli, E. and Pietrobon, D. and Plaszczynski, S. and Pointecouteau, E. and Polenta, G. and Popa, L. and Pratt, G. W. and Prézeau, G. and Prunet, S. and Puget, J. -L. and Rachen, J. P. and Reach, W. T. and Rebolo, R. and Reinecke, M. and Remazeilles, M. and Renault, C. and Renzi, A. and Ristorcelli, I. and Rocha, G. and Rosset, C. and Rossetti, M. and Roudier, G. and Rubiño-Martín, J. A. and Rusholme, B. and Sandri, M. and Santos, D. and Savelainen, M. and Savini, G. and Schaefer, B. M. and Scott, D. and Seiffert, M. D. and Shellard, E. P. S. and Spencer, L. D. and Stolyarov, V. and Stompor, R. and Sudiwala, R. and Sunyaev, R. and Sutton, D. and Suur-Uski, A. -S. and Sygnet, J. -F. and Tauber, J. A. and Terenzi, L. and Toffolatti, L. and Tomasi, M. and Tristram, M. and Tucci, M. and Tuovinen, J. and Valenziano, L. and Valiviita, J. and Van Tent, F. and Vielva, P. and Villa, F. and Wade, L. A. and Wandelt, B. D. and Wehus, I. K. and Yvon, D. and Zacchei, A. and Zonca, A.},
abstractNote = {Here, this paper presents a study of the integrated Sachs-Wolfe (ISW) effect from the Planck 2015 temperature and polarization data release. This secondary cosmic microwave background (CMB) anisotropy caused by the large-scale time-evolving gravitational potential is probed from different perspectives. The CMB is cross-correlated with different large-scale structure (LSS) tracers: radio sources from the NVSS catalogue; galaxies from the optical SDSS and the infrared WISE surveys; and the Planck 2015 convergence lensing map. The joint cross-correlation of the CMB with the tracers yields a detection at 4σ where most of the signal-to-noise is due to the Planck lensing and the NVSS radio catalogue. In fact, the ISW effect is detected from the Planck data only at ≈3σ (through the ISW-lensing bispectrum), which is similar to the detection level achieved by combining the cross-correlation signal coming from all the galaxy catalogues mentioned above. We study the ability of the ISW effect to place constraints on the dark-energy parameters; in particular, we show that ΩΛ is detected at more than 3σ. This cross-correlation analysis is performed only with the Planck temperature data, since the polarization scales available in the 2015 release do not permit significant improvement of the CMB-LSS cross-correlation detectability. Nevertheless, the Planck polarization data are used to study the anomalously large ISW signal previously reported through the aperture photometry on stacked CMB features at the locations of known superclusters and supervoids, which is in conflict with ΛCDM expectations. We find that the current Planck polarization data do not exclude that this signal could be caused by the ISW effect. In addition, the stacking of the Planck lensing map on the locations of superstructures exhibits a positive cross-correlation with these large-scale structures. Finally, we have improved our previous reconstruction of the ISW temperature fluctuations by combining the information encoded in all the previously mentioned LSS tracers. In particular, we construct a map of the ISW secondary anisotropies and the corresponding uncertainties map, obtained from simulations. Lastly, we also explore the reconstruction of the ISW anisotropies caused by the large-scale structure traced by the 2MASS Photometric Redshift Survey (2MPZ) by directly inverting the density field into the gravitational potential field.},
doi = {10.1051/0004-6361/201525831},
journal = {Astronomy and Astrophysics},
number = ,
volume = 594,
place = {United States},
year = 2016,
month = 9
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:
  • We cross correlate the new 3 year Wilkinson Microwave Anistropy Probe (WMAP) cosmic microwave background data with the NRAO VLA Sky Survey radio galaxy data and find further evidence of late integrated Sachs-Wolfe (ISW) effect taking place at late times in cosmic history. Our detection makes use of a novel statistical method (P. Baldi, G. Kerkyacharian, D. Marinucci, and D. Picard, math.ST/0606154 and P. Baldi, G. Kerkyacharian, D. Marinucci, D. Picard, math.ST/0606599) based on a new construction of spherical wavelets, called needlets. The null hypothesis (no ISW) is excluded at more than 99.7% confidence. When we compare the measured crossmore » correlation with the theoretical predictions of standard, flat cosmological models with a generalized dark energy component parameterized by its density, {omega}{sub DE}, equation of state w and speed of sound c{sub s}{sup 2}, we find 0.3{<=}{omega}{sub DE}{<=}0.8 at 95% C.L., independently of c{sub s}{sup 2} and w. If dark energy is assumed to be a cosmological constant (w=-1), the bound on density shrinks to 0.41{<=}{omega}{sub DE}{<=}0.79. Models without dark energy are excluded at more than 4{sigma}. The bounds on w depend rather strongly on the assumed value of c{sub s}{sup 2}. We find that models with more negative equation of state (such as phantom models) are a worse fit to the data in the case c{sub s}{sup 2}=1 than in the case c{sub s}{sup 2}=0.« less
  • A generic prediction of general relativity is that the cosmological linear density growth factor D is scale independent. But in general, modified gravities do not preserve this signature. A scale dependent D can cause time variation in gravitational potential at high redshifts and provides a new cosmological test of gravity, through early time integrated Sachs-Wolfe (ISW) effect-large scale structure (LSS) cross correlation. We demonstrate the power of this test for a class of f(R) gravity, with the form f(R) = {lambda}{sub 1}H{sub 0}{sup 2} exp(-R/{lambda}{sub 2}H{sub 0}{sup 2}). Such f(R) gravity, even with degenerate expansion history to {Lambda}CDM, can producemore » detectable ISW effect at z {approx}> 3 and l {approx}> 20. Null-detection of such effect would constrain {lambda}{sub 2} to be {lambda}{sub 2} > 1000 at > 95% confidence level. On the other hand, robust detection of ISW-LSS cross correlation at high z will severely challenge general relativity.« less
  • Cited by 13
  • Cited by 6