skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Wide Area Monitoring of Aircraft Structures Using Acousto-Ultrasonic Sensor Networks.

Abstract

Abstract not provided.

Authors:
;
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1398324
Report Number(s):
SAND2016-9403C
647830
DOE Contract Number:
AC04-94AL85000
Resource Type:
Conference
Resource Relation:
Conference: Proposed for presentation at the International Symposium on Aircraft Health Management held October 9-11, 2016 in Xiamen, Fujian, China.
Country of Publication:
United States
Language:
English

Citation Formats

Roach, Dennis P., and Rice, Thomas M. Wide Area Monitoring of Aircraft Structures Using Acousto-Ultrasonic Sensor Networks.. United States: N. p., 2016. Web.
Roach, Dennis P., & Rice, Thomas M. Wide Area Monitoring of Aircraft Structures Using Acousto-Ultrasonic Sensor Networks.. United States.
Roach, Dennis P., and Rice, Thomas M. Thu . "Wide Area Monitoring of Aircraft Structures Using Acousto-Ultrasonic Sensor Networks.". United States. doi:. https://www.osti.gov/servlets/purl/1398324.
@article{osti_1398324,
title = {Wide Area Monitoring of Aircraft Structures Using Acousto-Ultrasonic Sensor Networks.},
author = {Roach, Dennis P. and Rice, Thomas M.},
abstractNote = {Abstract not provided.},
doi = {},
journal = {},
number = ,
volume = ,
place = {United States},
year = {Thu Sep 01 00:00:00 EDT 2016},
month = {Thu Sep 01 00:00:00 EDT 2016}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share:
  • No abstract prepared.
  • A simpler and better way of monitoring the anisotropy of fiber-reinforced composite materials, based on the acousto-ultrasonic approach, is presented. In this approach, time of flight of the acousto-ultrasonic waves AU, rather than the stress wave factor, is measured. Two fundamental Lamb modes are generated under the first critical frequency: one is the first antisymmetric mode traveling with a slower velocity while the another is the first symmetric mode traveling with a faster speed. The later one is sensitive to the azimuthal angle and nearly nondispersive, and has a phase velocity very close to that of the bulk longitudinal wavemore » of the material. Experimental data measured from two methods, TOF measurement and slope method, are compared with theoretical results; a good agreement is obtained for monitoring the material anisotropy. There is a great potential for this AU approach in material-property evaluation and in quantitative measurements of defects and debonding of fiber-reinforced composites. However, more studies are needed to better understand the effect of the fiber/matrix bonding on the measurements and to extract more information from the AU signals.« less
  • A simpler and better way of monitoring the anisotropy of fiber-reinforced composite materials, based on the acousto-ultrasonic approach, is presented. In this approach, time of flight of the acousto-ultrasonic waves AU, rather than the stress wave factor, is measured. Two fundamental Lamb modes are generated under the first critical frequency: one is the first antisymmetric mode traveling with a slower velocity while the another is the first symmetric mode traveling with a faster speed. The later one is sensitive to the azimuthal angle and nearly nondispersive, and has a phase velocity very close to that of the bulk longitudinal wavemore » of the material. Experimental data measured from two methods, TOF measurement and slope method, are compared with theoretical results; a good agreement is obtained for monitoring the material anisotropy. There is a great potential for this AU approach in material-property evaluation and in quantitative measurements of defects and debonding of fiber-reinforced composites. However, more studies are needed to better understand the effect of the fiber/matrix bonding on the measurements and to extract more information from the AU signals.« less
  • The Atmospheric Radiation Measurement program operated by U.S. Department of Energy is one of the largest climate research programs dedicated to the collection of long-term continuous measurements of cloud properties and other key components of the earth’s climate system. Given the critical role that collected ARM data plays in the analysis of atmospheric processes and conditions and in the enhancement and evaluation of global climate models, the production and distribution of high-quality data is one of ARM’s primary mission objectives. Fault detection in ARM’s distributed sensor network is one critical ingredient towards maintaining high quality and useful data. We aremore » modeling ARM’s distributed sensor network as a dynamic Bayesian network where key measurements are mapped to Bayesian network variables. We then define the conditional dependencies between variables by discovering highly correlated variable pairs from historical data. The resultant dynamic Bayesian network provides an automated approach to identifying whether certain sensors are malfunctioning or failing in the distributed sensor network. A potential fault or failure is detected when an observed measurement is not consistent with its expected measurement and the observed measurements of other related sensors in the Bayesian network. We present some of our experiences and promising results with the fault detection dynamic Bayesian network.« less