skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Refining mass formulas for astrophysical applications: A Bayesian neural network approach

Authors:
;
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1398291
Grant/Contract Number:
FG02-92ER40750
Resource Type:
Journal Article: Publisher's Accepted Manuscript
Journal Name:
Physical Review C
Additional Journal Information:
Journal Volume: 96; Journal Issue: 4; Related Information: CHORUS Timestamp: 2017-10-06 10:40:16; Journal ID: ISSN 2469-9985
Publisher:
American Physical Society
Country of Publication:
United States
Language:
English

Citation Formats

Utama, R., and Piekarewicz, J.. Refining mass formulas for astrophysical applications: A Bayesian neural network approach. United States: N. p., 2017. Web. doi:10.1103/PhysRevC.96.044308.
Utama, R., & Piekarewicz, J.. Refining mass formulas for astrophysical applications: A Bayesian neural network approach. United States. doi:10.1103/PhysRevC.96.044308.
Utama, R., and Piekarewicz, J.. Fri . "Refining mass formulas for astrophysical applications: A Bayesian neural network approach". United States. doi:10.1103/PhysRevC.96.044308.
@article{osti_1398291,
title = {Refining mass formulas for astrophysical applications: A Bayesian neural network approach},
author = {Utama, R. and Piekarewicz, J.},
abstractNote = {},
doi = {10.1103/PhysRevC.96.044308},
journal = {Physical Review C},
number = 4,
volume = 96,
place = {United States},
year = {Fri Oct 06 00:00:00 EDT 2017},
month = {Fri Oct 06 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on October 6, 2018
Publisher's Accepted Manuscript

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share: