skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Pig has no uncoupling protein 1

; ; ; ; ORCiD logo;
Publication Date:
Sponsoring Org.:
USDOE Office of Electricity Delivery and Energy Reliability (OE), Power Systems Engineering Research and Development (R&D) (OE-10)
OSTI Identifier:
Grant/Contract Number:
Resource Type:
Journal Article: Publisher's Accepted Manuscript
Journal Name:
Biochemical and Biophysical Research Communications
Additional Journal Information:
Journal Volume: 487; Journal Issue: 4; Related Information: CHORUS Timestamp: 2017-10-05 09:26:27; Journal ID: ISSN 0006-291X
Country of Publication:
United States

Citation Formats

Hou, Lianjie, Shi, Jia, Cao, Lingbo, Xu, Guli, Hu, Chingyuan, and Wang, Chong. Pig has no uncoupling protein 1. United States: N. p., 2017. Web. doi:10.1016/j.bbrc.2017.04.118.
Hou, Lianjie, Shi, Jia, Cao, Lingbo, Xu, Guli, Hu, Chingyuan, & Wang, Chong. Pig has no uncoupling protein 1. United States. doi:10.1016/j.bbrc.2017.04.118.
Hou, Lianjie, Shi, Jia, Cao, Lingbo, Xu, Guli, Hu, Chingyuan, and Wang, Chong. 2017. "Pig has no uncoupling protein 1". United States. doi:10.1016/j.bbrc.2017.04.118.
title = {Pig has no uncoupling protein 1},
author = {Hou, Lianjie and Shi, Jia and Cao, Lingbo and Xu, Guli and Hu, Chingyuan and Wang, Chong},
abstractNote = {},
doi = {10.1016/j.bbrc.2017.04.118},
journal = {Biochemical and Biophysical Research Communications},
number = 4,
volume = 487,
place = {United States},
year = 2017,
month = 6

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on May 10, 2018
Publisher's Accepted Manuscript

Save / Share:
  • Research highlights: {yields} Invertebrates, for example amphioxus, do express uncoupling proteins. {yields} Both the sequence and the uncoupling activity of amphioxus UCP resemble UCP2. {yields} UCP1 is the only UCP that can form dimer on yeast mitochondria. -- Abstract: The present study describes the molecular cloning of a novel cDNA fragment from amphioxus (Branchiostoma belcheri) encoding a 343-amino acid protein that is highly homologous to human uncoupling proteins (UCP), this protein is therefore named amphioxus UCP. This amphioxus UCP shares more homology with and is phylogenetically more related to mammalian UCP2 as compared with UCP1. To further assess the functionalmore » similarity of amphioxus UCP to mammalian UCP1 and -2, the amphioxus UCP, rat UCP1, and human UCP2 were separately expressed in Saccharomyces cerevisiae, and the recombinant yeast mitochondria were isolated and assayed for the state 4 respiration rate and proton leak, using pYES2 empty vector as the control. UCP1 increased the state 4 respiration rate by 2.8-fold, and the uncoupling activity was strongly inhibited by GDP, while UCP2 and amphioxus UCP only increased the state 4 respiration rate by 1.5-fold and 1.7-fold in a GDP-insensitive manner, moreover, the proton leak kinetics of amphioxus UCP was very similar to UCP2, but much different from UCP1. In conclusion, the amphioxus UCP has a mild, unregulated uncoupling activity in the yeast system, which resembles mammalian UCP2, but not UCP1.« less
  • The uncoupling protein (UCP) is a proton/anion transporter found in the inner mitochondrial membrane of brown adipocyte. Although UCP has nor been detected in mitochondria from any other tissue, it shares structural and catalytic properties with several other mitochondrial carrier proteins. Although UCP was discovered only recently it is one of the most extensively studied mitochondrial carrier proteins.More recently, the mouse, rat, and human genes encoding for UCP have been isolated and sequenced. The availability of these various tools has led to several significant observations. UCP gene expression is strongly controlled at the level of transcription by signals that aremore » activated after the stimulation of brown adipocytes by norepinephrine. The comparison of UCP gene with the genes encoding the adenine nucleotide translocator revealed the existence of structural and evolutionary homologies. Moreover, in humans the UCP gene and one form of adenine nucleotide translocator gene are located on the same chromosome. Recently, the expression of functional UCp in various heterologous systems was achieved (Xenopus oocytes, CHO cells, yeasts). These data will facilitate studies of the structure/function relationship in UCP (identification of residues involved in H{sup +} transport, Cl{sup {minus}} transport, nucleotide binding, mitochondrial targeting). Another aspect of the present research on UCP is the understanding of mechanisms that control UCP gene and the differentiated commitment of adipose precursor cells to thermogenic brown adipocytes.« less
  • The authors have examined the activity of three lipogenic enzymes (malic enzyme (ME), glucose-6-phosphate dehydrogenase (G-6-PD), and acetyl coenzyme A (CoA) carboxylase), the activity of the mitochondrial FAD-dependent ..cap alpha..-glycerolphosphate dehydrogenase (..cap alpha..-GPD), and the mitochondrial concentration of uncoupling protein (UCP) in brown adipose tissue (BAT) of euthyroid and hypothyroid rats, both at room temperature and in response to acute cold stress. These enzymes and UCP are important for the thermogenic response of BAT in adaptation to cold. The basal level of the lipogenic enzymes was normal or slightly elevated in hypothyroid rats maintained at 23/sup 0/C, but the levelsmore » of ..cap alpha..-GPD and UCP were markedly reduced. Forty-eight hours at 4/sup 0/C resulted in an increase in the activity of G-6-PD, acetyl-CoA carboxylase, and ..cap alpha..-GPD and in the concentration of UCP both in euthyroid and hypothyroid animals, but the levels reached were invariably less in hypothyroid animals, indicating that thyroid hormone is necessary for a full metabolic response of BAT under maximal demands. Of all variables measured, the most affected was UCP followed by ..cap alpha..-GDP. Dose-response relationship analysis of the UCP response to T/sub 3/ indicated that the normalization of the response to cold requires saturation of the nuclear T/sub 3/ receptors. They concluded, therefore, that the activation of the BAT 5'-deiodinase induced by cold exposure is essential to provide the high levels of nuclear T/sub 3/ required for the full expression of BAT thermogenic potential.« less
  • In order to characterize the biogenesis of unique thermogenic mitochondria of brown adipose tissue, differentiation of precursor cells isolated from mouse brown adipose tissue was studied in cell culture. Synthesis of mitochondrial uncoupling protein (UCP), F1-ATPase, and cytochrome oxidase was examined by L-(35S)methionine labeling and immunoblotting. For the first time, synthesis of physiological amounts of the UCP, a key and tissue-specific component of thermogenic mitochondria, was observed in cultures at about confluence (day 6), indicating that a complete differentiation of brown adipocytes was achieved in vitro. In postconfluent cells (day 8) the content of UCP decreased rapidly, in contrast tomore » some other mitochondrial proteins (beta subunit of F1-ATPase, cytochrome oxidase). In these cells, it was possible, by using norepinephrine, to induce specifically the synthesis of the UCP but not of F1-ATPase or cytochrome oxidase. The maximal response was observed at 0.1 microM norepinephrine and the synthesis of UCP remained activated for at least 24 h. Detailed analysis revealed a major role of the beta-adrenergic receptors and elevated intracellular concentration of cAMP in stimulation of UCP synthesis. A quantitative recovery of the newly synthesized UCP in the mitochondrial fraction indicated completed biogenesis of functionally competent thermogenic mitochondria.« less