skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Land use change implications for large-scale cultivation of algae feedstocks in the United States Gulf Coast

Authors:
; ;
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1397650
Grant/Contract Number:
EE0003046
Resource Type:
Journal Article: Publisher's Accepted Manuscript
Journal Name:
Journal of Cleaner Production
Additional Journal Information:
Journal Volume: 153; Journal Issue: C; Related Information: CHORUS Timestamp: 2017-10-04 21:41:52; Journal ID: ISSN 0959-6526
Publisher:
Elsevier
Country of Publication:
United Kingdom
Language:
English

Citation Formats

Handler, Robert M., Shi, Rui, and Shonnard, David R.. Land use change implications for large-scale cultivation of algae feedstocks in the United States Gulf Coast. United Kingdom: N. p., 2017. Web. doi:10.1016/j.jclepro.2017.03.149.
Handler, Robert M., Shi, Rui, & Shonnard, David R.. Land use change implications for large-scale cultivation of algae feedstocks in the United States Gulf Coast. United Kingdom. doi:10.1016/j.jclepro.2017.03.149.
Handler, Robert M., Shi, Rui, and Shonnard, David R.. Thu . "Land use change implications for large-scale cultivation of algae feedstocks in the United States Gulf Coast". United Kingdom. doi:10.1016/j.jclepro.2017.03.149.
@article{osti_1397650,
title = {Land use change implications for large-scale cultivation of algae feedstocks in the United States Gulf Coast},
author = {Handler, Robert M. and Shi, Rui and Shonnard, David R.},
abstractNote = {},
doi = {10.1016/j.jclepro.2017.03.149},
journal = {Journal of Cleaner Production},
number = C,
volume = 153,
place = {United Kingdom},
year = {Thu Jun 01 00:00:00 EDT 2017},
month = {Thu Jun 01 00:00:00 EDT 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record at 10.1016/j.jclepro.2017.03.149

Citation Metrics:
Cited by: 1work
Citation information provided by
Web of Science

Save / Share:
  • Protected areas (PAs) cover about 22% of the conterminous United States. Understanding their role on historical land use and land cover change (LULCC) and on the carbon cycle is essential to provide guidance for environmental policies. In this study, we compiled historical LULCC and PAs data to explore these interactions within the terrestrial ecosystem model (TEM). We found that intensive LULCC occurred in the conterminous United States from 1700 to 2005. More than 3 million km2 of forest, grassland and shrublands were converted into agricultural lands, which caused 10,607 Tg C release from land ecosystems to atmosphere. PAs had experiencedmore » little LULCC as they were generally established in the 20th century after most of the agricultural expansion had occurred. PAs initially acted as a carbon source due to land use legacies, but their accumulated carbon budget switched to a carbon sink in the 1960s, sequestering an estimated 1,642 Tg C over 1700–2005, or 13.4% of carbon losses in non-PAs. We also find that PAs maintain larger carbon stocks and continue sequestering carbon in recent years (2001–2005), but at a lower rate due to increased heterotrophic respiration as well as lower productivity associated to aging ecosystems. It is essential to continue efforts to maintain resilient, biodiverse ecosystems and avoid large-scale disturbances that would release large amounts of carbon in PAs.« less
  • Locating sites for new algae cultivation facilities is a complex task. The climate must support high growth rates, and cultivation ponds require appropriate land and water resources as well as key utility and transportation infrastructure. We employ our spatiotemporal Biomass Assessment Tool (BAT) to select promising locations based on the open-pond cultivation of Arthrospira sp. and a strain of the order Desmidiales. 64,000 potential sites across the southern United States were evaluated. We progressively apply a range of screening criteria and track their impact on the number of selected sites, geographic location, and biomass productivity. Both strains demonstrate maximum productivitymore » along the Gulf of Mexico coast, with the highest values on the Florida peninsula. In contrast, sites meeting all selection criteria for Arthrospira were located along the southern coast of Texas and for Desmidiales were located in Louisiana and southern Arkansas. Site selection was driven mainly by the lack of oil pipeline access in Florida and elevated groundwater salinity in southern Texas. The requirement for low salinity freshwater (<400 mg L-1) constrained Desmidiales locations; siting flexibility is greater for salt-tolerant species such as Arthrospira. Combined siting factors can result in significant departures from regions of maximum productivity but are within the expected range of site-specific process improvements.« less
  • The global indirect land use change (ILUC) implications of biofuel use in the United States of America (USA) from 2001 to 2010 are evaluated with a dynamic general equilibrium model. The effects of biofuels production on agricultural land area vary by year; from a net expansion of 0.17 ha per 1000 gallons produced (2002) to a net contraction of 0.13 ha per 1000 gallons (2018) in Case 1 of our simulation. In accordance with the general narrative about the implications of biofuel policy, agricultural land area increased in many regions of the world. However, oil-export dependent economies experienced agricultural landmore » contraction because of reductions in their revenues. Reducing crude oil imports is a major goal of biofuel policy, but the land use change implications have received little attention in the literature. Simulations evaluating the effects of doubling supply elasticities for land and fossil resources show that these parameters can significantly influence the land use change estimates. Therefore, research that provides empirically-based and spatially-detailed agricultural land-supply curves and capability to project future fossil energy prices is critical for improving estimates of the effects of biofuel policy on land use.« less
  • Behavior of regional precipitation and temperature over the West Coast of the United States was examined in a long perpetual winter simulation from a simplified global general circulation model. The model, a simplified version of the U.S. National Weather Service global operational forecast model, was run over a series of 568 winters, complete with geopotential, precipitation, and near-surface temperature. In spite of the fixed climatological boundary conditions, the simulated winter-mean precipitation and temperature anomalies have a fairly realistic low-frequency regional variability. Both synoptic-scale events and seasonal average behavior are produced quite realistically by the model. Like observations, the regional surfacemore » variations can be related to the large-scale low-frequency circulation. Four regional temperature/precipitation extremes - namely, warm/dry, cool/wet, cool/dry, and warm/wet - can be identified from the simulated winter-mean series over the West Coast. Associated with these four regional extremes, model Northern Hemisphere 500-mb height composites exhibit distinct planetary-scale circulation patterns. An empirical orthogonal function analysis further reveals that the first and third modes of the 500-mb height anomalies are primary contributors to these four regional extremes. The first mode largely governs the regional temperature variation, whereas the third mode largely determines the precipitation variation. 37 refs., 14 figs., 2 tabs.« less
  • Crop production depends not only on the yield but also on the area harvested. The yield response to climate change has been widely examined, but the sensitivity of crop land use to hypothetical climate change has not been examined directly. Crop land-use regression models for estimating crop area indices (CAIs)-the percent of land used for corn, soybean, wheat, and sorghum production-are presented. Inputs to the models include available water-holding capacity of the soil, percent of land available for rain-fed agricultural production, annual precipitation, and annual temperature. The total variance of CAI explained by the models ranged from 78% from wheatmore » to 87% for sorghum, and the root-mean-square errors ranged from 1.74% for sorghum to 4.24% for corn. The introduction of additional climatic variables to the models did not significantly improve their performance. The crop land-use models were used to predict the CAI for every crop reporting district in the United States for the current climatic condition and for possible future climate change scenarios (various combinations of temperature and precipitation changes over a range of -3{degrees} to +6{degrees}C and -20% to +20% respectively). The magnitude of climatic warming suggested by GCMs (GISS and GFDL) is from 3.5{degrees} to 5.9{degrees}C for regions of the United States. For this magnitude of warming, the model suggests corn and soybean production areas may decline while wheat and sorghum production areas may expand. If the warming is accompanied by a decrease in annual precipitation from 1% to 10%, then the areas used for corn and soybean production could decrease by as much as 20% and 40%, respectively. The area for sorghum and wheat under these conditions would increase by as much as 80% and 70%, respectively; the exact amount depending strongly on the change in precipitation. 15 refs., 6 figs.« less